Robust Simultaneous Lot-sizing & Scheduling Model with Uncertain Demand

Abstract

Optimization models have been used to support decision making in production planning for a long time. However, several of those models are deterministic and do not address the variability that is present in some of the data. Robust Optimization is a methodology which can deal with the uncertainty or variability in optimization problems by computing a solution which is feasible for all possible scenarios of the data within a given uncertainty set. Simultaneous Lot-sizing & Scheduling is an important problem in production planning environments. In this paper, we consider a simultaneous Lot-sizing & Scheduling problem with uncertain demand. A robust optimization criterion considering to deviation from optimal and shortage cost is applied to formulate a robust linear programming model. Finally, we provide a set of numerical examples to verify the effectiveness of the approach. A Fix & Relax algorithm used to solve the problem. Experimental result shows that the solving problem algorithm in lower time.

Keywords


[1] Fleischmann, Bernhard, and Herbert Meyr, “The general lot sizing and scheduling problem”, OR Spectrum, Vol. 19, pp. 11-21, 1997.
[2] Almada-Lobo, Bernardo, José F. Oliveira, and Maria Antóniacarravilla, “A note on the capacitated lot-sizing and scheduling problem with sequence-dependent setup costs and setup times”, Computers &Operations Research, Vol. 35, NO. 4, pp. 1374-1376, 2008.
[3] Almada-Lobo, Bernardo, Diego Klabjan, Maria Antóniacarravilla, and José F. Oliveira, “Single machine multi product capacitated lot sizing with sequence-dependent setups”, International Journal of Production Research, Vol. 45, NO.20, pp. 4873-4894, 2007.
[4] همتیان، میلاد، قاسم مصلحی و سروش علیمرادی، “زمان­بندی استوار ماشین‌های موازی یکسان”، نهمین کنفرانس بین‌المللی مهندسی صنایع، تهران، انجمن مهندسی صنایع ایران، دانشگاه صنعتی خواجه‌نصیرالدین طوسی، 1391.
[5] Soyster, Allen L.,“Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming”, Operations Research, Vol. 21, NO.5, pp. 1154-1157, 1973.
[6] Ben-Tal, Aharon, and ArkadiNemirovski, “Robust convex optimization”, Mathematics of Operations Research, Vol. 23, NO.4, pp. 769-805, 1998.
[7] Ben-Tal, Aharon, and ArkadiNemirovski, “Robust solutions of uncertain linear programs”, Operations Research Letters, Vol. 25, NO.1, pp. 1-13, 1999.
[8] Mulvey, John M., Robert J. Vanderbei, and Stavros A. Zenios, "Robust optimization of large-scale systems", Operations research,Vol. 43, NO. 2,pp. 264-281,1995.
[9] Lasserre, J. B., and C. Mercé., “Robust hierarchical production planning under uncertainty”, Annals of Operations Research, Vol. 26, NO.1, pp. 73-87, 1990.
[10] Gfrerer, Helmut, and GüntherZäpfel, “Hierarchical model for production planning in the case of uncertain demand”, European Journal of Operational Research, Vol. 86, NO.1, pp. 142-161, 1995.
[11] Thompson, S. Daniel, and Wayne J. Davis, “An integrated approach for modeling uncertainty in aggregate production planning”, Systems, Man and Cybernetics, IEEE Transactions on, Vol. 20, NO. 5, pp. 1000-1012, 1990.
[12] Thompson, S. D., D. T. Watanabe, and W. J. Davis,“A comparative study of aggregate production planning strategies under conditions of uncertainty and cyclic product demands”, The International Journal Of Production Research, Vol. 31, NO.8, pp. 1957-1979, 1993.
[13] Gören, Selçuk,“Robustness and stability measures for scheduling policies in a single machine environment”, Diss. Bilkent University, 2002.
[14] یزدانی، مهسا و مهدی بیجاری، “ارائه یک مدل CLSP برای تعیین جواب‌های پایدار”، هشتمین کنفرانس بین‌المللی مهندسی صنایع، تهران، انجمن مهندسی صنایع ایران، دانشگاه صنعتی امیرکبیر، 1390.
[15] Xu, Weida, and Tianyuan Xiao, “Strategic Robust Mixed Model Assembly Line Balancing Based on Scenario Planning”, Tsinghua Science & Technology, Vol. 16, NO. 3, pp. 308-314, 2011.
[16] Mercé, C., and G. Fontan,“MIP-based heuristics for capacitated lotsizing problems”, International Journal of Production Economics, Vol. 85, NO. 1, pp. 97-111, 2003
[17] Clark, Alistair R., and Simon J. Clark, “Rolling-horizon lot-sizing when set-up times are sequence-dependent”, International Journal of Production Research, Vol. 38, NO. 10, pp. 2287-2307, 2000.
[18] Mohammadi, M., S. M. T. FatemiGhomi, B. Karimi, and S. A. Torabi, “MIP-based heuristics for lotsizing in capacitated pure flow shop with sequence-dependent setups”, International Journal of Production Research, Vol. 48, NO. 10, pp. 2957-2973, 2009.
  • Receive Date: 19 November 2014
  • Revise Date: 22 December 2014
  • Accept Date: 05 January 2015
  • Publish Date: 20 February 2015