Developing Network DEA Model with Undesirable Outputs for Evaluation of Green Supply Chain Management

Authors

1 MSc. Graduate of Industrial Engineering, Faculty of Industrial Engineering, Urmia University of Technology, Urmia,

2 Associate professor, Faculty of Industrial and Mechanical Engineering, Qazvin branch, Islamic Azad University

Abstract

By increasing environmental laws and regulations and raising public awareness of environmental protection, companies cannot easily ignore environmental issues if they want to work in global markets and compete with other companies. Green Supply Chain Management has become a proactive approach to enhance environmental performance. Under stakeholder pressures and regulations, firms need to enhance (GSCM) practice, which are influenced by practices such as green purchasing, green design, product recovery, and collaboration with customers and suppliers. As proactive firms adopt GSCM, their economic performance and environmental performance will be enhanced. Hence, GSCM evaluation is very important for any company. One of the techniques that can be used for evaluating GSCM is data envelopment analysis (DEA). Traditional models of data envelopment analysis (DEA) are based upon thinking about production as a “black box”. One of the drawbacks of these models is to omit linking activities the objective of this study to propose network DEA model for evaluating the GSCM in the presence of undesirable outputs. A four-stage supply chain demonstrates the application of the proposed model.

Keywords


[1]  حبیب اله گرمابکی، رضا. خلیلی دامغانی، کاوه. قلندری، منا. امیریان، جواد. امیری زاده بهبهانی، مائده. "ارزیابی کارایی محصولات شرکت گلبرگ بهاران با رویکرد توسعه محصول با استفاده از تحلیل پوششی داده ها"، مدیریت زنجیره تأمین، 19 (58)، 21-28، 1396.
[2]   ایمانی، دین‌محمد. احمدی، افسانه. "مدیریت زنجیره تأمین سبز راهبرد نوین کسب مزیت رقابتی"، ماهنامه مهندسی خودرو و صنایع وابسته، 1 (10)،14-19، 1388.
[3]  Charnes A., Cooper W.W., Rhodes E., "Measuring the efficiency of decision making units", European Journal of Operational Research.2, (6), 429 –444, 1978.
[4]  Fare, R., Whittaker, G., "An intermediate input model of dairy production using. Complex survey data", Journal of Agricultural Economics 46(2), 201-13, 1995.
[5]  Fare, R., Grosskopf, S. Network DEA., "Socio Economic Planning Sciences", 4(1), 35-49, 2000.
[6]  Cook, W.D., Zhu, J., Bi, G., Yang, F., "Network DEA: additive efficiency decomposition", European Journal of Operational Research. 207 (2), 1122–1129, 2010.
[7]  Farzipoor Saen, R., "Developing a new data envelopment analysis methodology for supplier selection in the presence of both undesirable output s and imprecise data", International of advanced manufacturing technology. 51(9), 1243-1250, 2010.
[8]  Lin, R.J., "Using fuzzy DEMATEL to evaluate the green supply chain management practices", Journal of Cleaner Production. 40, 32–39, 2013.
[9]  Chopra, S., Meindl, P., "Supply Chain Management: Strategy, Planning, and Operations", Prentice-Hall, Upper Saddle River, NJ, 2001.
[10]         صفایی، ناصر ، عامری نسب، علیرضا. "شناسایی و رتبه‌بندی آسیب‌های شبکه مدیریت زنجیره تأمین با رویکرد تحلیل فرآیند شبکه‌ای در یکی از شرکت­های تولیدی، مدیریت زنجیره تأمین"، 20 (61)، 4-16، 1398.
[11]  Srivastava, S.K., "Green supply-chain management: a state-of-the-art literature review", International Journal of Management Review9 (1), 53–80, 2007.
[12]  Tseng, M.L., "Using a hybrid MCDM model to evaluate firm environmental knowledge management in uncertainty", Applied Soft Computing 11 (1), 1340-1352, 2010.
[13]  Chang, B., Chang, C.W., Wu, C.H., "Fuzzy DEMATEL method for developing supplier selection criteria", Expert System with Application 38 (3), 1850-1858, 2011.
[14]   مهرگان، محمدرضا. "ارزیابی عملکرد سازمان‌ها: رویکرد کمی، با استفاده از تحلیل پوششی داده‌ها"، موسسه انتشارات و چاپ دانشگاه تهران، تهران، 1383.
[15]  Lewis, H.F., Sexton, T. R., "Network DEA: Efficiency analysis of organizations with complex internal structure", Computers Operations Research 31,1365-1410, 2004.
[16]  Kao, C., Hwang, S. N., "Efficiency measurement for network systems: IT impact on firm performance", Decision Support Systems 48 (3), 437-446, 2010.
[17]  Fare, R., Grosskopf, S., Whittaker, G., "Network DEA. In: Zhu, J., Cook, W.D. (Eds.) Modeling Data Structures Irregularities and Structural Complexities in Data Envelopment Analysis", Springer, New York, Chap. 12, 2007.
[18]  Tone, K., Tsutsui, M., " Network DEA: a slack-based measure approach", European Journal of Operational Research 197 (1), 243-252, 2009.
[19]  Yang, C., Liu, H.M., "Managerial efficiency in Taiwan bank branches: a network DEA", Economics Modeling 29 (2), 450-461, 2012.
[20]  Despotis, D.K., Koronakos, G., Sotiros D., "A multi-objective programming approach to network DEA with an Application to the Assessment of the Academic Research Activity", Procedia Computer Science 55, 370–379, 2015.
[21]  Cooper, W.W., Seiford, L.M., Tone, K., "Data envelopment analysis:  a comprehensive text with models, applications, references and DEA-solver software", Springer Science + Business Media, New York, 2007.
[22]  Pittman, R., "Multilateral productivity comparisons with undesirable outputs", The Economic Journal 93 (372), 883-891, 1983.
[23]  Färe, R., Grosskopf, S., Lovell, C. K., & Pasurka, C., "Multilateral productivity comparisons when some outputs are undesirable: a nonparametric approach", The review of economics and statistics, 90-98, 1989.
[24]  Yaisawarng, S., Klein, J., "The effects of sulfur dioxide controls on productivity change in the US electric power industry", The Review of Economics and Statistics 76 (3), 447-460, 1994.
[25]  Chung, Y. H., Färe, R., & Grosskopf, S., "Productivity and undesirable outputs: a directional distance function approach", journal of Environmental Management, 51(3), 229-240, 1997.
[26]  Jahanshahloo, G.R., Lotfi, F.H., Shoja, N., Tohidi, G., Razavyan, S., "Undesirable inputs and outputs inDEA models", Applied Mathematics and Computation 169(2), 917-925, 2005.
[27]  Korhonen, P.J., Luptacik, M., "Eco-efficiency analysis of power plants: an extension of data envelopment analysis", European Journal of Operational Research. 154 (2), 437-446, 2004.
[28]  Mirhedayatian, S.M., Azadi, M., "Farzipour Saen, R. A novel network data envelopment analysis model for evaluation green supply chain management", Int. J. Production Economics, 544-554, 2014.
[29]  Seiford, L.M., Zhu, J., "Modeling undesirable factors in efficiency evaluation", European Journal of Operations Research 142 (1), 16-20, 2002.
[30]  Liu, W., Sharp, J., Wu, Z., "Preference production and performance in data envelopment analysis", Annals of Operational Research, 105-127, 2006.
[31]  Yu, M.-M., Lin, E., "Efficiency and effectiveness in railway performance using a multi-activity network DEA model",  Omega: The International Journal of Management Science. 42, 1283-1294, 2008.
[32]  Tajbakhsh A., Hassini E., "A data envelopment analysis approach to evaluate sustainability in supply chain networks", Journal of Cleaner Production 22, 1-4, 2014.
[33]  Nishant, R., Agi M. A., "Understanding influential factors on implementing green supply chain management practices: An interpretive structural modelling analysis", Journal of Environmental Management (188), 351-363, 2017.
  • Receive Date: 25 August 2019
  • Revise Date: 22 November 2019
  • Accept Date: 24 November 2019
  • Publish Date: 23 August 2019