[1] Goldberg, J. (2004). Operation research models for the deployment of emergency services vehicles. EMS Management Journal, 1(1), 20-39.
[2] Aringhieri, R., Carello, G., & Morale, D. (2007). Ambulance location through optimization and simulation: the case of Milano urban area. Univerity of Milano, Italy.
[3] Billhardt, H., Lujak, M., Sanchez-Brunete, V., Fernandez, A., & Ossowski, S. (2014). Dynamic coordination of ambulances for emergency medical assistance services. Knowledge-Based Systems, 70, 268-280.
[4] zhen, L., Wang, K., Hu, H., & Chang, D. (2014). simulation optimization framework for ambulance deployment and relocation problems. Computers & Industrial Engineering, 72, 12-23.
[5] Ebrahimi, M., & Mirzaei Modam, M. (2015). Ranking Zones of Tehran to Add New Emergency Services Using Fuzzy AHP. Journal of Industrial Engineering, University of Tehran, 49(2), 149-163.
[6] Shiah, D. M., & & Chen, S. W. (2007). Ambulance allocation capacity model. 9th International Conference on e-Health Networking, Application and Services (pp. 40-45). Taipei: IEEE.
[7] Brotcorne, L., Laporte, G., & Semet, F. (2003). Ambulance location and relocation models. European Journal of Operational Research, 147, 451–463.
[8] Nordin, N., Zaharudin, Z., & Maasar, M. (2012). Finding shortest path of the ambulance routing: Interface of A∗ algorithm using C# programming. Symposium on Humanities. Science and Engineering Research, 1569-1573.
[9] Wang, Y., Luangkesorn, K., & Shuman, L. (2012). Modeling emergency medical response to a mass casualty incident using agent based simulation. Socio-Economic Planning Sciences, 46(4), 281-290.
[10] erlin, G. N., & Liebman, J. C. (1974). Mathematical analysis of emergency ambulance location. Socio-Economic Planning Sciences, 8(6), 323-328.
[11] Van Essen, J., Hurink, J., Nickel, S., & Reuter, M. (2013). Models for ambulance planning on the strategic and the tactical level. Beta working paper series.
[12] Aringhieri, R., Bruni, M., Khodaparasti, S., & van Essen, J. (2017). Emergency medical services and beyond: Addressing new challenges. Computers & Operations Research, 78, 349-368.
[13] م. امیری, م. علی پور و م. حیدری فرسنگی, “الگوریتم های ژنتیک و ممتیک برای مدل صف فازی حداکثر پوشش مکان یابی-تخصیص با در نظرگرفتن تراکم در سیستم و چند نوع تقاضا,” مهندسی صنایع و مدیریت شریف, جلد 2, 15-25, 1390.
[14] Abo-Hamad, W., & Arisha, A. (2013). Simulation-based framework to improve patient experience in an emergency department. European Journal of Operational Research, 224, 154-166.
[15] Laporte, G., Nickel, S., & Saldanha da Gama, F. (2015). Location Science. Springer International Publishing.
[16] S. Syam, S. (2008). A multiple server location–allocation model for service system design. Computers & Operations Research, 35, 2248 – 2265.
[17] ح. شاه بندرزاده و م. منصوری, “مدل ریاضی فازی مکان یابی تخصیص سلسله مراتبی برای خدمات فوریت های پزشکی با به کارگیری الگوریتم NSGA-II,” در دومین کنفرانس بین المللی مدیریت صنعتی, تهران, 1396.
[18] Alsalloum, O., & Rand, G. (2006). Extensions to emergency vehicle location models. Computers & Operations Research, 33, 2725-2743.
[19] Zarkeshzadeh, M., Zare, H., Heshmati, Z., & Teimouri, M. (2016). A novel hybrid method for improving ambulance dispatching response time through a simulation study. Simulation Modelling Practice and Theory, 60, 170–184.
[20] McCormack, R., & Coates, G. (2015). A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival. European Journal of Operational Research, 247, 294-309.
[21] Lee, T., Jang, H., Cho, S., & Turner, J. (2012). A simulation-based iterative method for trauma center–air ambulance location problem. Proceedings of the 2012 Winter Simulation Conference, (pp. 1-12). Berlin.
[22] Ünlüyurt , T., & Tunçer, a. (2016). Estimating the performance of emergency medical service location models via discrete event simulation. Computers & Industrial Engineering, 102, 467-475 [6] [23] Anagnostou, A., Nouman, A., & J.E. Taylor, S. (2013). DISTRIBUTED HYBRID AGENT-BASED DISCRETE EVENT EMERGENCY MEDICAL SERVICES SIMULATION. Proceedings of the 2013 Winter Simulation Conference (pp. 1625-1636). IEEE.
[24] خ. سلیمی فرد و م. منصوری, “مکانیابی و تخصیص آمبولانس با رویکرد آمیخته تیوری صف (شبیه سازی) و برنامه ریزی عدد صحیح,” در دومین کنفرانس بین المللی تحولات نوین در مدیریت ، اقتصاد و حسابداری, تهران, 1397.
[25] Chanta, S., E. Mayorga, M., & A. McLay, L. (2014). The minimum p-envy location problem with requirement on minimum survival rate. Computers & Industrial Engineering, 74, 228-239.
[26] Erkut, E., Ingolfsson, A., & Erdogan, G. (2007). Ambulance location for maximum survival. Naval Research Logistics, 55, 42-58.
[27] Larsen, M., Eisenberg, M., Cummins, R., & Hallstrom, A. (1993). Predicting survival from out-of-hospital cardiacarrest—A graphic model. Annals of Emergency Medicine, 22(11), 1652–1658.
[28] Waalewijn , R., De Vos , R., Tijssen , J., & Koster , R. (2001). Survival models for out-of-hospital cardiopulmonary resuscitation from the perspectives of the bystander, the first responder, and the paramedic. Resuscitation , 51(22), 113-122.
[29] De Maio, V., G. Stiell, I., A. Wells, G., & W. Spaite, D. (2003). Optimal defibrillation response intervals for maximum out-of-hospital cardiac arrest survival rates. Annals of Emergency Medicine, 42(2), 242–250.
[30] Knight, V., Harper, P., & Smith, L. (2012). Ambulance allocation for maximal survival with heterogeneous outcome measures. Omega, 40, 918-926.
[31] Kanchala, S., Mayorga, M., & McLay, L. (2014). Recommendations for dispatching emergency vehicles under multi tiered response via simulation. International Transactions in Operation Research, 21(4), 581-617.