A Mathematical Location-Inventory Model for Designing a Forward /Backward Logistic Network under Demand and Return Uncertainty with Multiple Capacity Levels

Document Type : Research/ Original/ Regular Article

Authors

1 Department of Industrial Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran

2 2Department of Industrial Engineering, Faculty of Mechanical and Industrial Engineering, Islamic Azad University, Qazvin Branch, Qazvin, Iran

Abstract

Today, the competitive business environment has led to increasing cooperation among companies as the members of supply chain networks. In this area, the supply chain logistics network design is an important subject due to its effect on the responsiveness and efficiency. Over the past few years, due to environmental issues, their legal requirements and economic benefits, great attention has been paid to inverse logistics. In this paper, a mixed integer stochastic location-inventory model has been proposed for the integrated design of the network of a multi-period multi-product closed loop supply chain considering multiple capacity levels for facilities. The market demand and correspondingly the return value are considered to be uncertain in order to make the model close to the real-life conditions. Since the capacitated facility location problem considered in this research is an NP-hard type problem, we have used two meta-heuristic algorithms including the genetic algorithm (GA) and the Bees algorithms (BA) for solving this problem. Some numerical problems are designed and solved to assess the performance of the model and solution heuristics. From the viewpoint of solution quality, the BA outperforms the GA (by an average of 11.6%) whilst from the viewpoint of solution time, the GA is five times faster than the BA on average.

Keywords

Main Subjects


[1]   N. Darabi,   F.  Barzinpour, and A. Makui, “A model  for designing an integrated forward and reverse logistics network considering returned products pricing.  2th International Conference of Logistics and Supply Chain,” 2011. (In Persian)##
  [2]   L. Meade,  J. Sarkis, and A. Presley, “The theory and practice of reverse logistics,” International  Journal  of  Logistics Systems and Management, vol. 3, pp. 56-84, 2007.##
[3]   E.  Keyvanshokooh, M.  Fattahi,   S. Seyed-Hosseini,   and R. Tavakkoli-Moghaddam, “A dynamic pricing approach for returned products in integrated forward/reverse logistics network design,” Applied Mathematical Modelling, vol. 37,  pp. 10182-10202, 2013.##
[4]  A. Amiri, “Designing a distribution network in a supply chain system. formulation and efficient solution procedure,”  European Journal of Operational Research, vol.171,  pp. 567-576, 2006.##
[5] ‌ M.  Fleischmann  P. Beullens,  J. M. Bloemhof‌ruwaard, ‌ and L. Wassenhove, “The impact of product recovery on logistics network design, Production  and Operations Management, vol. 10, no. 6, pp. 156–173, 2001.##
[6]  M. S.  Pishvaee, R. Z. Farahani,   and  W. A.  Dullaert, “memetic algorithm for bi-objective integrated forward/reverse logistics network design. Computers and   Operations  Research,”  vol. 37, no. 6,  pp. 1100‌1112, 2010.##
[7]  D. H.  Lee  and  M. A.  Dong, “heuristic approach to logistics network design for end-of-lease computer products recovery,” Transportation Research: Part E, vol. 44, pp. 455–474, 2008.##
[8]   M. J. Tarokh,   M.  EsmaeiliGookeh, and Sh. Torabi,
“A model to optimize the design of a reverse logistic network under uncertainty,” Advances in Industrial Engineering, vol. 46, no. 2, pp. 159-173, 2012. (In Persian)##
[9]   J. Razmi  and   M. S. Pishvaee, “Quantitative methods for reverse logistics management,” The Institution of Trade Studies and Researches, Tehran, Iran, 2021. (In Persian) ##
[10] S. Hasanzadeh Amin and G. Zhang, “A multi‌ objective facility location model for closed-loop supply chain network under uncertain demand and return. Applied Mathematical Modeling,” vol. ‌37,
 pp. 4165–4176, 2013.##
[11] L. Kroon and   G. Vrijens, “Returnable containers: An example of reverse logistics.  International  Journal of Physical Distribution and Logistics Management,” vol. 25,   pp. 56–68, 1995.##
[12] A. I. Barros,  R. Dekker, and  V.  Scholten, “A two‌level network for recycling sand: a case study,” European Journal of Operational Research, vol. 110,   pp.199–214, 1998.##
[13] V. Jayaraman,   V. Guide,  and R. Srivastava, “A closed-loop logistics model for remanufacturing,” Journal  of   the  operational  research society, vol. 50‌, pp. 497-508, 1999.##
[14] H. R. Krikke, A. Van Harten,  P. C. Schuur, “Business caseOcé: reverse logistic network re‌design for copiers. OR  Spectrom,”  vol.  21‌, no. 6, pp. 381-‌409, 1999.##
[15] V. Jayaraman, R. A.  Patterson,  and   E. Rolland, “The design of reverse distribution networks: Models and solution procedures,” European Journal
of  Operational  Research,  vol. 150,  pp. 128–149, 2003.##
[16] H. Min,  H. J. Ko,  and  B. I. Park, “A lagrangian relaxation heuristic for solving the multi-echelon, multi-commodity, closed-loop supply chain network design problem,” International Journal of Logistics Systems and Management,vol. 1, no. 4, pp. 382–404, 2005.##
[17] H. Min,   H. J.  Ko,   and   C. S. Ko,  “A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns. Omega,” vol. 34,  pp. 56 – 69,  2006.##
[18] K. Kim,   I. Song, J.  Kim, and   B. Jeong,  “Supply planning model for remanufacturing system in reverse logistics environment,” Computers and Industrial Engineering, vol. 51, no. 2, pp. 279–287, 2006.##
[19] H. Üster, G.  Easwaran,  E.  Akçali, and  S. Çetinkaya, “Benders decomposition with alternative multiple cuts for a multi product closed loop supply chain network design model,” Naval Research Logistics, vol. 54,
 no. 8,  pp. 890-907, 2007.##
[20] J. Q.  Frota Neto,  J.  Bloemhof,  A.  A. E. Van Nunen,‌  and E. Van‌Heck, “Designing and evaluating sustainable logistics network,”  International journal of production Economics, vol.‌ 111, no. 3, pp.        195-208, 2008.##
[21] R. K. Pati, P. Vrat, and P. Kumar, “A goal programming model for paper recycling system,” Omega, vol. 36‌, pp. 405–417, 2008.##
[22] B. Vahdani,  M. Sharifi, “‌An inexact-fuzzy-stochastic optimization model for a closed loop supply chain network design problem,”  Journal of  Optimization  in Industrial Engineering, vol. 6, no. 12, pp.7-16, 2013.##
[23] E. Roghanian  and  P.‌ Pazhoheshfar, “An optimization model for reverse logistics network under stochastic environment by using genetic algorithm,” Journal of Manufacturing Systems, vol.33, no. 3‌, pp. 348-356, 2014##
24] H. Soleimani, ‌ M. Seyyed-Esfahani, ‌ and  M. Shirazi, “Designing and planning a multi-echelon multi-period multi-product closed-loop supply chain utilizing genetic algorithm. The International Journal of Advanced Manufacturing Technology,” vol. 68,
 pp.  917-931, 2013.##
[25] A. Ç. Suyabatmaz, F. T.  Altekin,  and G. Şahin, “Hybrid simulation-analytical modeling approaches for the reverse logistics network design of a third‌party logistics provider. Computers and Industrial Engineering, vol.70, pp. 74-89, 2014.##
[26] H. Soleimani and  G. Kannan, “A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network design in large-scale networks. Applied Mathematical Modelling,” vol. 39‌, pp. 3990-4012, 2015.##
[27] E. Ahmadzadeh and B. Vahdani, “A location‌inventory-pricing model in a closed loop supply chain network with correlated demands and shortages under a periodic review system. Computers and  Chemical
Engineering”, vol.101, pp.148-166, 2017.##
[28] M. Fathi,  M. Khakifirooz,  A. Diabat, and H. Chen, “An integrated queuing-stochastic optimization hybrid Genetic Algorithm for a location-inventory supply chain network,”  International Journal of Production Economics, vol.  237,  pp. 108109, 2021.##
[29] M. Seifbarghy and S .Malekpour Kolbadinejhad, “Development of a closed loop supply chain network considering environmental factors and location-inventory decisions under uncertainty,” Iranian Journal of Supply Chain Management, vol. 22, no. 67, pp. 4-22, 2020. (In Persian)##
[30] S. Hasanzadeh Amin and  G. Zhang, “A multi‌objective facility location model for closed-loop supply chain network under uncertain demand and return,”  Applied Mathematical Modeling, vol. 37,
no. 6, pp. 4165-4176, 2013.##
 
Volume 23, Issue 72
February 2022
Pages 23-39
  • Receive Date: 16 August 2021
  • Revise Date: 27 January 2022
  • Accept Date: 29 January 2022
  • Publish Date: 22 November 2021