پیش بینی تقاضای زنجیره تأمین در شرایط عدم اشتراک اطلاعات (مطالعه موردی فروشگاه فیوره)

نوع مقاله : مفهومی

نویسندگان

1 مهندسی صنایع، دانشجوی کارشناسی ارشد، دانشکده فنی و مهندسی، دانشگاه غیردولتی- غیرانتفاعی شمال آمل

2 استادیار گروه مهندسی صنایع ، دانشگاه غیردولتی- غیرانتفاعی شمال آمل، دانشکده فنی و مهندسی

چکیده

صنعت مواد غذایی ازجمله صنایعی است که به اشتراک‌ گذاری اطلاعات با شرکای زنجیره­تأمین در آن مورد توجه بوده است. با این‌وجود به دلیل مسائلی از قبیل هزینه‌های بالای سرمایه‌گذاری در فناوری‌های اطلاعات، عدم اعتماد مدیران و ترس از نشت اطلاعات به بیرون، این اطلاعات به اشتراک گذاشته نمی‌شود. هدف این پژوهش ارائه راهکار برای مواردی است که تمایل به اشتراک گذاشتن اطلاعات در زنجیره تأمین در آن وجود ندارد. در این پژوهش با در نظر گرفتن راهبرد استنتاج تقاضای پایین ­دست و با بهره ­گیری از روش ­های پیش­ بینی SMA، WMA،SES  وDES به ارزیابی رفتار تقاضا در فروشگاه بزرگ فیوره آمل می­ پردازیم. دقت و صحت روش‌ها علاوه بر روش MSE، با استفاده از روش‌های MAD، STD، Bias، MAPE تعیین می‌شود. می­ شود. نتایج حاصل از تجزیه‌وتحلیل داده‌ها گویای آن است که برمبنای چهار روش محاسبه خطایMAD، MSE، STD،  Bias روش پیش‌بینی WMA نسبت به روش SMAبهتر است، در­واقع این پژوهش این فرصت را فراهم می‌کند از روش WMA که بهبودیافته روش SMA است در مطالعات آینده استفاده شود. همچنین بر مبنای روش محاسبه خطای MAPE برای بیشترگروه­ ها روش پیش­بینی SES روش بهتری محسوب می­ شود.

کلیدواژه‌ها


عنوان مقاله [English]

The Forecasting of Supply Chain Demand Using Time Series Techniques in Conditions the No Information Sharing; Case Study: Fioreh Big Market

نویسندگان [English]

  • Maryam Elahi 1
  • Amir Khakbaz 2
1 M.Sc. Student in Industrial Engineering, college engineering, Private University of North Amol
2 Assistant Professor of Industrial Engineering, Private University of North Amol, college engineering
چکیده [English]

The food industry is among the industries where information sharing with the supply chain partners has been taken into consideration. However, this information is not shared due to issues such as high costs of investment in information technology, lack of trust from managers, and fear of data leaks out. The purpose of this study is to provide a solution for cases in which there are no desire to share information in the chain. In this study, we evaluate a DDI strategy by use of different forecasting methods such as SMA, WMA, SES and DES, in the Fiorella Amol large store. The accuracy and of these methods are determined using MSE, MAD, STD, Bias, MAPE methods. The obtained results show that, based on the methods MAD, MSE, STD, and Bias, the WMA forecasting method has better efficiency than the SMA does. In addition, based on the MAPE error calculation method, the SES forecasting method is the best one. In the other words, the present study provides an opportunity to use the WMA method instead of the SMA method in the future studies.

کلیدواژه‌ها [English]

  • Supply Chain Management
  • Downstream Demand Inference
  • Weighted Moving Average
  • Seasonal Exponential Smoothing
  • Double Exposure Smoothing
[1] Butner, K., "The smarter supply chain of the future", Strategy & Leadership, 38(1),2-31,2010.
[2] Allred, C.R., Fawcett, S.E, Wallin, C., & Magnan, G.M., "A dynamic collaboration capability as a source of competitive advantage", Decision Sciences, 42(1), 129-161, 2011.
[3] Butner, K., "The smarter supply chain of the future", Strategy & Leadership,38(1),2-31,2010.  
[4] Shue, C., Rebecca Yen, H., & Chae, B., "Determinants of supplier-retailer collaboration: evidence form an international study", International Journal of Operations & Production Management, 26(1), 24-49, 2006.
[5] Gilbert, K., "An ARIMA Supply Chain Model", Management Science, 51(2), 305-310, 2005.
[6] Zhang, X., "Evolution of ARMA Demand in Supply Chains", Manufacturing & Service Operations Management, 6(2), 195-198, 2004.
[7] Ali, M.M., & Boylan, J.E., "On the effect of non-optimal forecasting methods on supply chain downstream demand", IMA Journal of Management Mathematics, 23(1), 81-98, 2012.
[8] Mendelson, H., "Organisational architecture and success in the information technology industry", Management Science, 46(4), 514-529, 2000.
[9] Frohlich, M. T., "E-integration in the supply chain: Barriers and performance", Decision Sciences, 33(4), 537-556, 2002.
[10] Klein, R., Rai, A., & Straub, D.W., "Competitive and cooperative positioning in supply chain logistics relationships", Decision Sciences, 38(4), 611-646, 2007.
[11] Forslund, H., & Jonsson, P., "The impact of forecast information quality on supply chain performance", International Journal of Operations & Production Management, 27(1), 90-107, 2007.
[12] Li, L., & Zhang, H., "Confidentiality and information sharing in supply chain coordination", Management Science, 54(8), 1467-1481, 2008.
[13] Forslund, H., & Jonsson, P., "The impact of forecast information quality on supply chain performance", International Journal of Operations & Production Management, 27(1), 90-107, 2007.
[14] Fawcett, S.E., Osterhaus, P., Magnan, G. M., Brau, J.C., & McCarter, M. W., "Information sharing and supply chain performance: The role of connectivity and willingness", Supply Chain Management: An International Journal, 12(5), 358-368, 2007.
[15] Allred, C.R., Fawcett, S.E, Wallin, C., & Magnan, G.M., "A dynamic collaboration capability as a source of competitive advantage", Decision Sciences, 42(1), 129-161, 2011.
[16] Shang, W., Ha, A. Y., & Tong, S., "Information sharing in a supply chain with a common retailer", Management Science, 62(1), 245-263, 2015.
[17] Liu, M., Cao, E., & Salifou, C. K., "Pricing strategies of a dual-channel supply chain with risk aversion", Transportation Research Part E: Logistics and Transportation Review, 90, 108-120, 2016.
[18] Jiang, B., Tian, L., Xu, Y., & Zhang, F., "To share or not to share: Demand forecast sharing in a distribution channel", Marketing Science, 35(5), 800-809, 2016.
[19] Dominguez, R., Cannella, S., Barbosa-Póvoa, A. P., & Framinan, J. M., "Information sharing in supply chains with heterogeneous retailers", Omega, 79, 116-132, 2018.
[20] Graves, S.C., "A Single-Item Inventory Model for a Non-stationary Demand Process", Manufacturing & Service Operations Management, 1(1), 50-61, 1999.
[21] Raghunathan, S., "Information Sharing in a Supply Chain: A Note on its Value When Demand is Non-Stationary", Management Science, 47(4), 605-610, 2001.
[22] Zhang, X., "Evolution of ARMA Demand in Supply Chains", Manufacturing & Service Operations Management, 6(2), 195-198, 2004.
[23] Gaur, V., Giloni, A., & Seshadri, S., "Information Sharing in a Supply Chain under ARMA Demand", Management Science, 51(6), 961-969, 2005.
[24] Gilbert, K., "An ARIMA Supply Chain Model", Management Science, 51(2), 305-310, 2005.
[25] Ali, M.M., & Boylan, J.E., "Feasibility principles for downstream demand inference in supply chains", Journal of the Operational Research Society, 62(3), 474-482, 2011.
[26] Ali, M.M., & Boylan, J.E., "On the effect of non-optimal forecasting methods on supply chain downstream demand", IMA Journal of Management Mathematics, 23(1), 81-98, 2012.
[27] Ali, M.M., Boylan, J.E., & Syntetos, A.A., "Forecast errors and inventory performance under forecast information sharing", International Journal of Forecasting, 28(4), 830-841, 2012.
[28] Makridakis, S., Andersen, A., Carbone, R., Fildes, R. Hibon, M. Lewandowski, R., Newton, J, Parzen, E., & Winkler, R., "The accuracy of extrapolation (time series) methods: Results of a forecasting competition", Journal of Forecasting, 1(2), 111-153, 1982.
[29] Kong, G., Rajagopalan, S., & Zhang, H., "Revenue sharing and information leakage in a supply chain", Management Science, 59(3), 556-572, 2013.
[30] Chen, Y.J., & Deng, M., "Information sharing in a manufacturer-supplier relationship: Suppliers’ incentive and production efficiency", Production and Operations Management 24(4), 619–633, 2015.
[31] Ali, M. M., Babai, M. Z., Boylan, J. E., & Syntetos, A. A., "Supply chain forecasting when information is not shared", European Journal of Operational Research, 260(3), 984-994, 2017.
[32] Dominguez, R., Cannella, S., Barbosa-Póvoa, A. P., & Framinan, J. M., "Information sharing in supply chains with heterogeneous retailers", Omega, 79, 116-132, 2018.
]33[ الوانی،سیدمهدی. میرشفیعی، نصرالله. "مدیریت تولید"، چاپ چهاردهم، مشهد: آستان قدس رضوی، بنیاد پژوهش ­­های اسلامی آستان قدس رضوی، 1381.
[34] Ravindran, A. R., & Warsing Jr, D. P., "Supply chain engineering: Models and applications", CRC Press, 2016.