رتبه‌بندی معیارهای لازم جهت طبقه‌بندی اقلام پرمصرف (مطالعه موردی: مس‌سرچشمه)

نوع مقاله : ترویجی

نویسندگان

1 دانشگاه شهید باهنر کرمان

2 استادیار، بخش مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان

3 رئیس اداره انبارها، مجتمع مس سرچشمه

چکیده

طبقه‌بندی اقلام یکی از مباحث مهم و کلیدی در مدیریت ‌موجودی بوده و لازم است در این عصر که تنوع و گستردگی محصولات رخ نشان ‌می‌دهد، انبارهای متنوعی از اقلام جهت تولید محصولات متنوع، در دسترس ‌باشد. اما این گستردگی و تنوع اقلام، ضرورت استخراج معیارهایی را جهت طبقه‌بندی دقیق و کارا، بیش از پیش آشکار می‌نماید. هدف از این پژوهش رتبه‌بندی معیارهای لازم جهت طبقه‌بندی اقلام‌ پرمصرف مس‌سرچشمه می‌باشد. ابزار گردآوری اطلاعات، پرسشنامه محقق‌ خود ساخته استاندارد‌، بر اساس طیف ‌پنج‌ درجه‌ لیکرت، اعداد فازی ‌مثلثی، معیارهای استفاده‌شده در مقالات مختلف در زمینه طبقه‌بندی ‌چندمعیاره اقلام‌ پرمصرف طی سال‌های 1986 تا 2016 و همچنین استخراج معیارهایی از محل مس‌سرچشمه بوده است. پایایی این پرسشنامه مطابق با آلفای ‌کرونباخ برابر 923/0 و روایی این پرسشنامه، براساس روایی ‌صوری ‌کمی و ‌کیفی مشخص گردید. جامعه ‌آماری این پژوهش 52 نفر از خبرگان امورهای مختلف مس‌سرچشمه بوده ‌است. جهت تجمیع دیدگاه‌ خبرگان از روش میانگین ‌هندسی ‌فازی و جهت فازی ‌زدایی از میانگین ‌اعداد فازی ‌مثلثی استفاده‌شده ‌است که درنهایت مشخص‌ گردید معیارهای ((صحت اطلاعات))، ((دردسترس‌بودن‌مشخصات و خصوصیات فنی))، ((کمیابی)) و ((زمان ازکارافتادگی یا توقف))، به‌ترتیب مهم‌ترین معیارهای طبقه‌بندی اقلام ‌پرمصرف بوده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Ranking criteria required for the classification of highly consumed items (case study: Sarcheshmeh Copper)

نویسندگان [English]

  • ali soltanpour 1
  • shahram aria 2
  • seyed hamed moosavirad 2
  • Hamid EzzatAbadi 3
1 Shahid Bahonar University of Kerman
2 Assistant Professor of Industrial Engineering Department of Industrial Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman,
3 Head of Warehouses office, Sarcheshmeh Copper Complex
چکیده [English]

One of the key issues in inventory management is classification of items, it is necessary to
have various depots to produce various products in this age that variety and diversity of products
are the focus. However, this variety of items and diversity show the necessity of extracting some
criteria for precise and efficient classification more than ever. The aim of this study is to rank
the required criteria for classification of Fast-Moving items of Sarcheshmeh Copper. Data
collection tool was a standard self-made questionnaire, based on five-option Lickert scale and
triangular fuzzy numbers, and the criteria used in different articles in the field of multi-criteria
classification of commonly used items from 1986 to 2016, as well as extraction of some criteria
from Sarcheshmeh Copper. Cronbach's alpha reliability of this questionnaire was 0.923, and its
validity has been determined based on quantitative and qualitative face validity. The target
population included 52 experts of various affairs of Sarcheshmeh Copper. Fuzzy geometric mean
was used for the integration of experts' opinion, and for defuzzification, triangular fuzzy numbers
mean was used. Finally, it was determined that criteria ((accuracy of information)), ((availability
of technical specifications)), ((scarcity)), ((downtime or stop)), respectively, are the most
important classification criteria of Fast-Moving items.

کلیدواژه‌ها [English]

  • Ranking criteria
  • Five-point Likert scale
  • Standard Questionnaire
  • Fuzzy
  • Fast-Moving
[1]غلامزاده،احمد، (1374)، طبقه بندی و کد گذاری کالا: ابزار بهبود سیستم اطلاعات مدیریت لجستیک. دانشگاه امام حسین (ع)، مؤسسه چاپ و انتشارات.
[2] Guvenir, H., Altay and E. Erel, (1998), Multicriteria inventory classification using a genetic algorithm. European Journal of Operational Research, 105(1): p. 29-37.
[3] Ramanathan, R.,(2006), ABC inventory classification with multiple - criteria using weighted linear optimization, Computers & Operations Research 33(3) 695–700
[4] Flores, B.E. and D. Clay Whybark, (1986), Multiple Criteria ABC Analysis. International Journal of Operations & Production Management, 6(3): p. 38-46.
[5] Ng, W.L., (2007), A simple classifier for multiple criteria ABC analysis. European Journal of Operational Research, 177(1): p. 344-353.
[6] زواشکیانی، علی؛ آزادگان، رضا و محسن ربیعی، (1394)، مدیریت انبار و قطعات یدکی، تهران، آریانا قلم
[7] ناظمی، شمس الدین.، شمس الدینی، رضا. و خورسندی اکبر نژاد، محمد حسین. , (1390), ارائه مدلی برای طبقه بندی اقلام مواد و موجودی ها با استفاده ازروش  (ABC–FUZZY)مطالعه موردی: شرکت پنل سازی هامون. ، چشم انداز مدیریت صنعتی: ص98-83
[8] Babai, M. Z., Ladhari, T., and Lajili, I. , (2014), On the inventory performance of multi-criteria classification methods: empirical investigation, International Journal of Production Research, vol. 53, pp. 279-290.
[9] Baykasoğlu,   A., Subulan,   K.   and Karaslan,  F. S. , (2016), A new fuzzy linear assignment method for multi-attribute decision making with an application to spare parts inventory classification, Applied Soft Computing, vol. 42, pp. 1-17, 5.
[10] Bhattacharya, A., Sarkar, B., & Mukherjee, S. K. , (2007), Distance-based consensus method for ABC analysis, International Journal of Production Research,45(15),3405–3420.
[11]Braglia, M., Grassi, A., & Montanari, R. , (2004), Multi-attribute classification method for spare parts  inventory management, Journal of Quality in Maintenance Engineering, 10(1), 55–65.
[12]Cakir, O., & Canbolat, M. S. , (2008), A web- based decision support system for multi-criteria inventory classification using fuzzy AHP  methodology, Expert Systems with Applications, 35(3), pp.1367–1378.
[13] Cavalieri, S., Garetti, M., Macchi, M. and Pinto,R. , (2008), A decision-making framework for  managing maintenance spare part, Production    Planning & Control: The Management of Operations, Vol. 19 No. 4, pp. 379-396
[14] Çelebi, D., Bayraktar, D. and ö.Aykaç, D. S. , (2008), Multi criteria classification for spare parts inventory, 38th Computer and Industrial    Engineering Conference, October, pp. 1780-1787.
[15] Chen, J.-X. , (2011), Peer-estimation for multiple criteria ABC inventory classification, Computers & Operations Research, vol. 38, pp. 1784-1791, 12.
[16] Chen, J.-X. , (2012), Multiple criteria ABC inventory classification using two virtual items, International Journal of Production Research, vol. 50, pp. 1702-1713.  
[17] Chen, Y., Li, K.W., Kilgour, D.M. and Hipel, K.W., (2008), A case-based distance model for multiple criteria ABC analysis, Computers & Operations Research 35 , 776 – 796
[18] Chu, C.-W., Liang, G.-S. and Liao, C.-T. , (2008), Controlling inventory by combining ABC analysis and fuzzy classification, Computers & Industrial Engineering, vol. 55, pp. 841-851, 11.
[19] Douissa, M. R. and Jabeur K. , (2016), A New Model for Multi-criteria ABC Inventory Classification: PROAFTN Method, Procedia Computer Science, vol. 96, pp. 550-559.
[20] Duchessi, P., Tayi, G.K. and Levy, J.B. , (1988), A conceptual approach for managing of spare parts, International Journal of Physical   Distribution & Materials Management, Vol. 18  No. 5, pp. 8-15.
[21] Ernst, R. and Cohen, M.A. , (1990), Operations Related Groups (ORGs): A Clustering Procedure for Production/ Inventory Systems, JOURNAL OF OPERATIONS MANAGEMENT ,Vol 9. No 4, October 1990
[22] Flores, B. E., Olson, D. L., & Dorai, V. K. , (1992), Management of multicriteria inventory classification, Mathematical and Computer Modelling, 16(12), 71–82.
[23] Flores, B. E., & Whybark, D. C. , (1987), Implementing multiple criteria ABC analysis, Journal of  Operations Management,7(1),79–84.
[24] Fu, Y., Lai, K. K., Miao, Y., and Leung, J. W. K. , (2015),  A distance-based decision-making method to improve multiple criteria ABC inventory classification, International Transactions in Operational Research, vol. 23, pp. 969-978.
[25] Gajpal, P.P., Ganesh, L.S., Rajendran, C. , (1994), Criticality   analysis of spare parts using the analytic hierarchy process, Int. Journal Production Economics, Vol. 35 Nos 1-3, pp. 293-297.
[26] Mohammaditabar D., Ghodsypour, S. H., and O'Brien, C. , (2012), Inventory control system design by integrating inventory classification and policy selection, International Journal Production Economics, vol. 140, pp. 655-659, 12.
[27] Hadad, Y.  and  Keren, B., (2013), ABC inventory classification via linear discriminant analysis and ranking methods, International Journal of Logistics Systems and Management, vol. 14, pp. 387-404.
[28] Hadi-Vencheh, A. and Mohamadghasemi A. , (2011), A fuzzy AHP-DEA approach for multiple criteria ABC inventory classification, Expert Systems with Applications, vol. 38, pp. 3346-3352, 4.
[29] Mohamadghasemi,  A. and Hadi-Vencheh, A. and, (2011), Determining the ordering policies of inventory items in class B using If–Then rules base, Expert Systems with Applications, vol. 38, pp. 3891-3901, 4.
[30] Hadi-Vencheh, A. ,(2010), An improvement to multiple criteria ABC inventory classification, European Journal of Operational Research, vol. 201, pp. 962-965.
[31] Hatefi, S. M., Torabi, S. A. and Bagheri, P. , (2014), Multi-criteria ABC inventory classification with mixed quantitative and qualitative criteria, International Journal of Production Research, vol. 52, pp. 776-786.
[32] Hatefi, S. M. and Torabi, S. A. , (2015), A Common Weight Linear Optimization Approach for Multicriteria ABC Inventory Classification, Advances in Decision Sciences, vol. 2015, p. 11.
[33] Huiskonen, J. , (2001), Maintenance spare parts  logistics: special characteristics and strategic choices, International Journal Production Economics, Vol. 71 No. 1, pp. 125-133.
[34] Jamshidi, H., & Jain, A. , (2008), Multi-criteria ABC inventory classification: With exponential smoothing weights, The Journal of GlobalBusiness Issues, 2(1), 61.
[35] Jeddou, M. B. , (2014), Multi-Criteria ABC Inventory Classification- A Case of Vehicles Spare Parts Items, Journal of Advanced Management Science, vol. 2, pp. 181-185.
[36]  Kaabi, H., Jabeur, K. and Enneifar, L. , (2015), Learning criteria weights with TOPSIS method and continuous VNS for multi-criteria inventory classification, Electronic Notes in Discrete Mathematics, vol. 47, pp. 197-204, 2.
[37] Kabir, G., and Akhtar Hasin, M. A. , (2012), Multiple criteria inventory classification using fuzzy analytic hierarchy process, International Journal of Industrial Engineering Computations vol. 3, pp. 123–132.
[38] Kabir, G., and Akhtar Hasin, M. A. , (2013), Multi-criteria inventory classification through integration of fuzzy analytic hierarchy process and artificial neural network, International Journal of Industrial and Systems Engineering, vol. 14.
[39] Keskin, G. A., and Ozkan, C. , (2013), Multiple Criteria ABC Analysis with FCM Clustering, Journal of Industrial Engineering.
[40] KIRIŞ, Ş. , (2013), Multi-Criteria Inventory Classification by Using a Fuzzy Analytic Network Process (ANP) Approach, INFORMATICA, vol. 24, pp. 199–217.
[41] Liu, J., Liao, X.,Zhao, W. and Yang, N. , (2016), A classification approach based on the outranking model for multiple criteria ABC analysis, Omega, vol. 61, pp. 19-34, 6.
[42] Lolli, F., Ishizaka, A. and Gamberini, R. , (2014), New AHP-based approaches for multi-criteria inventory classification, International Journal Production Economics, vol. 156, pp. 62-74, 10.
[43] López-Soto,  D.,  Yacout,  S.  and Angel-Bello,   F. , (2016), Root cause analysis of familiarity biases in classification of inventory items based on logical patterns recognition, Computers & Industrial Engineering, vol. 93, pp. 121-130, 3.
[44] Molenaers, A., Baets, H., Pintelon, L. and   Waeyenbergh, G. , (2012), Criticality classification of spare parts:a case study,International Journal of Production Economics,  Vol. 140 No. 2, pp. 570-578.
[45] Partovi, F. Y., & Anandarajan, M. , (2002), Classifying inventory using an artificial neural network approach, Computers & Industrial Engineering, 41(4), 389–404.
[46] Park, J., Bae, H., and Bae, J. , (2014), Cross-evaluation-based weighted linear optimization for multi-criteria ABC inventory classification, Computers & Industrial Engineering, vol. 76, pp. 40-48, 10.
[47] Partovi, F. Y., & Burton, J. , (1993), Using the analytic hierarchy process for   ABC analysis, International Journal of Operations & Production Management, 13(9), 29–44.
[48] Reid, R. A. , (1987), THE ABC METHOD IN HOSPITAL INVENTORY MANAGEMENT: A PRACTICAL, Production and Inventory Management Journal, pp. 67-70.
[49] Rezaei, J. , (2007), A fuzzy model for multi- criteria inventory classification, Analysis of  Manufacturing Systems, 167-172
[50] Rezaei, J. , (2010), A NOTE ON MULTI -  CRITERIA INVENTORY CLASSIFICATION USING WEIGHTED LINEAR OPTIMIZATION,  Yugoslav Journal of Operations Research, pp. 293 - 299.
[51] Rezaei, J. and Dowlatshahi, S.(2010), A rule-based multi-criteria approach to inventory classification, International Journal of Production Research, Vol. 48, No. 23, 1 December 2010, 7107–7126
[52] Tavassoli, M., Faramarzi, G. R. and Saen, R. F., (2014),Multi-criteria ABC inventory classification using DEA-discriminant analysis to predict group membership of new items,  International Journal Applied Management Science, vol. 6, pp. 171-189.
[53] Sarmah, S. P. and Moharana, U. C. , (2015), Multi-  criteria classification of spare parts inventories – a web based approach, Journal of Quality in Maintenance Engineering, vol. 21, pp. 456-477.
[54] Šimunović, K., Draganjac, T. and Šimunović, G. , (2008), Application of different quantitative techniques to inventory  classification, Technical Gazette, vol. 15, No.4, pp. 41-47.
[55] ŠIMUNOVIĆ, K., ŠIMUNOVIĆ G. and ŠARIĆ, T. , (2009), Application of Artificial Neural Networks to Multiple Criteria Inventory Classification,  Strojarstvo 51 (4) pp. 313-321.
[56] Soylu, B. and Akyol, B. , (2014), Multi-criteria inventory classification with reference items, Computers & Industrial Engineering, vol. 69, pp. 12-20, 3.
[57]  Stoll, J., Kopf, R., Schneider, J., and Lanza, G. , (2015), Criticality analysis of spare parts management: a multi-criteria classification regarding a cross-plant central warehouse strategy,  Prod. Eng. Res. Devel., vol. 9, pp. 225-235.
[58] Torabi, S. A., Hatefi, S. M., and Saleck Pay, B. , (2012), ABC inventory classification in the presence of both quantitative and qualitative criteria, Computers & Industrial Engineering, vol. 63, pp. 530-537, 9.
[59] Wong, W.P. , (2010), Decision support model  for inventory management using AHP approach: a case study on a Malaysian  semiconductor firm, California Journal of  Operations Management, Vol. 8 No. 2, pp.55-71.
[60] Yu, M.-C., )2011(, Multi-criteria ABC analysis using artificial-intelligence-based classification techniques, Expert Systems with Applications, vol. 38, pp. 3416-3421, 4.
[61] GHORABAEE, M. K., ZAVADSKAS, E. K., OLFAT, L., TURSKIS Z. , )2015(, Multi-Criteria Inventory Classification Using a New Method of Evaluation Based on Distance from Average Solution (EDAS), INFORMATICA, vol. 26, pp. 435-451.
[62] Zhou, P., & Fan, L. , )2007(,A note on multi- criteria ABC inventory classification using  weighted linear optimization, European Journal  of Operational Research, 182(3), 1488–1491
[63] حبیبی، آرش؛ ایزدیار، صدیقه و سرافرازی، اعظم، (1393)، تصمیم‌گیری چند معیاره فازی، انتشارات کتیبه گیل
[64]محمدبیگی، ابوالفضل.،محمدصالحی، نرگس. وگل، محمد علی.،( 1393)، رواییوپایاییابزارهاوروشهایمختلفاندازه‌گیریآنهادرپژوهشهای کاربردیدرسلامت، مجله دانشگاه علوم پزشکی رفسنجان، دوره13، 1170-1153
[65]حسینی، زهرا.،قربانی، زهرا وابناحمدی، آرزو. ، (1394)، بررسیرواییصوریومحتواییوپایاییپرسشنامهبررسیچرخهتغییردرافرادسیگاری، مجلهدانشکدهدندانپزشکیمشهد، دوره39، شماره2،154-147
[66]دلشاد، محمد حسین؛  حیدرنیا، علیرضا  و نیکنامی، شمس الدین؛ (بهمن 1392)، بررسی روایی و پایایی ابزار سنجش متغیرهای تداوم رفتارهای پیشگیری کننده از عفونت ناشی از ویروس هپاتیت ب در کارکنان خدمات بهداشتی درمانی، مجله دانشگاه علوم پزشکی مازندران، دوره بیست و سوم،  شماره 109، 71-82
[67] Wu, C. –H. and Fang W.-C, (2011), Combining the Fuzzy Analytic HierarchyProcessand the fuzzy Delphi method for developing criticalcompetences of electronic commerce professionalmanagers,. Qual Quant , 45:751–768, DOI 10.1007/s11135-010-9425-6
[68] Bojadziev,G , Bojadziev,M., (2007), FUZZY LOGIC FOR BUSINESS, FINANCE, AND MANAGEMENT, (2nd Edition), Advances in Fuzzy Systems: Applications and Theory — Vol. 23