توسعه یک مدل برای مدیریت اختلالات ‌زنجیره تأمین در پروژه‌ها‌ی عمرانی

نوع مقاله : پژوهشی

نویسندگان

1 کارشناسی ارشد گروه مهندسی صنایع دانشگاه کردستان

2 هیئت‌علمی دانشکده مهندسی صنایع دانشگاه کردستان

چکیده

اجرای پروژه‌ها‌ی عمرانی مستلزم به­کارگیری حجم قابل توجهی از نیروی انسانی، منابع مالی، فنی و‌ سازمانی بوده و اختلال در زنجیره تأمین آنها به طور مستقیم حیات و منابع مالی پروژه‌‌‌ها‌ی عمرانی را تهدید کرده و حتی می‌تواند موجب توقف پروژه شود. به همین سبب این اختلالات باید شناسائی، پیامدها و ریسک آنها ارزیابی و راه‌کار‌های مواجهه با آنها تدوین گردند. در این پژوهش مدل ریاضی بهینه‌‌سازی دو‌هدفه برای انتخاب همزمان تأمین­کنندگان و راه‌کارهای رویایی با این اختلالات ارائه شده است. هدف مدل اول کمینه کردن مجموع چهار نوع هزینه خرید مصالح، جریمه تأخیر اتمام پروژه، هزینه انجام فعالیت‌ها‌ی پروژه و هزینه‌ها‌ی حمل و نقل مصالح می‌باشد. هدف دوم کمینه کردن زمان اتمام پروژه و در نتیجه تأخیر احتمالی در زمان تحویل پروژه است. این تأخیر علاوه برهزینه مستقیم جریمه، ضربه بزرگی به اعتبار پیمانکار وارد نموده و ممکن است موجب عدم عقد قرارداد‌های بعدی گردد. همچنین این پژوهش نشان می‌دهد که چگونه تحلیل و مقایسه نتایج حل مسئله چند‌هدفه می‌تواند به ایجاد یک دیدگاه بهتر از مسئله بیانجامد. به منظور نمایش کاربرد و چگونگی استفاده از این مدل‌ها، یک مثال عددی با نرم‌افزار GAMS حل شده و حساسیت نتایج نسبت به تغییرات فاکتور‌های اصلی آن، تحلیل شده ‌است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Development of a Model for Supply Chain Disruptions Management in Construction Projects

نویسندگان [English]

  • Abolfazl Kureh 1
  • MAHMOUD SHAHROKHI 2
1 M.Sc. Department of Industrial Engineering, University of Kurdistan
2 Engineering department, University of kurdistan, Iran
چکیده [English]

The accomplishment of construction projects requires the use of a significant amount of human, financial, technical, and organizational resources, and any disruption in their supply chain directly threatens the project life and financial resources, and may even cause the project to stop. Thus, identifying the potential disorders, their consequences and risks, and developing strategies to deal with them is of great importance. This research develops one-objective and two-objective mathematical optimization models for the simultaneous selection of suppliers and disorder preventive solutions. The purpose of the first model is to minimize the total of four types of material purchase costs, project completion fines, project activity costs, and material transportation costs. The second model aims to minimize the project completion time and, therefore, the possible delay in the project delivery time. In addition to the direct cost of the fine, this delay significantly reduces the contractor's credit and may lead to the non-conclusion of other contracts. This study also shows how analyzing and comparing the problem-solving results in both single-objective and multi-objective models can help to understand the problem better. We have solved a numerical example with GAMS software and analyzed the sensitivity analysis of the model results to demonstrate that the proposed models are applicable.

کلیدواژه‌ها [English]

  • Supply Chain
  • Construction Projects
  • Supply Chain Disruptions
  • Supply risk
  • Financial Resources
[1] P. J. Agrell, R. Lindroth, and A. Norrman, “Risk, information and incentives in telecom supply chains,” International Journal of Production Economics,
vol. 90, pp. 1-16, 2004.##
[2]  R. Handfield  and   E. Nichols, Introduction to. “Supply Chain Management,”   Prentice Hall, Englewood Cliffs, NJ, 1999.##
[3]  S. H. Amin  and  J.  Razmi, “An integrated fuzzy model for supplier management: A case study of ISP selection and evaluation,”  EXPERT SYST APPL, vol. 36, pp. 8639-8648, 2009.##
[4] D.D. Shipley, "Resellers’ supplier selection criteria for different consumer products," European Journal of Marketing, vol. 19, pp. 26-36, 1985.##
[5]  C. A. Weber,  J. R. Current, and W. C. Benton, “Vendor selection criteria and methods,” EUR J OPER RES, vol. 50, pp. 2-18, 1991.##
[6]   E. Timmerman, “An approach to vendor performance evaluation," IEEE Engineering Management Review, vol. 15, pp. 14-20, 1987.##
[7]   L. De Boer, E. Labro, and P. Morlacchi, “A review of methods supporting supplier selection,”  European journal of purchasing and supply management, vol. 7, pp. 75-89, 2001.##
[8] F. T. Chan and N. Kumar, “Global supplier development considering risk factors using fuzzy extended AHP-based approach,”  Omega, vol. 35, pp. 417-431, 2007.##
[9]   F. T. Chan  and H. K. Chan, “Development of the supplier selection model- a case study in the advanced technology industry,”  Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 218, pp. 1807-1824, 2004.##
[10] S. Zaim, M. Sevkli, and M. Tarim, “Fuzzy analytic hierarchy based approach for supplier selection," Journal of Euromarketing, vol. 12, pp.
147-176, 2003.##
[11] S. Vinodh, R. A. Ramiya, and S. G. Gautham, “Application of fuzzy analytic network process for supplier selection in a manufacturing organisation”  EXPERT SYST APPL, vol. 38, pp. 272-280, 2011.##
[12] F. R. L. Junior, L. Osiro, and L.C.R. Carpinetti,
“A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection,”  Applied Soft Computing, vol. 21, pp. 194-209, 2014.##
[13] O. Ustun   and  E. A. Demı, “An integrated multi-objective decision-making process for multi-period lot-sizing with supplier selection,”  Omega, vol. 36, pp. 509-521, 2008.##
[14] W. L.  Ng, “An efficient and simple model for multiple criteria supplier selection problem,”  EUR J OPER RES, vol. 186, pp. 1059-1067, 2008.##
[15] A. A. Gaballa, “Minimum cost allocation of tenders” Journal of the Operational Research Society, vol. 25, pp. 389-398, 1974.##
[16] A.  Mendoza  and   J.  A. Ventura, “Analytical models for supplier selection and order quantity allocation,”  Applied Mathematical Modelling, 
vol. 36, pp. 3826-3835, 2012.##
[17] V.  Wadhwa  and  A. R.  Ravindran, “Vendor selection in outsourcing,” Computers & operations research, vol. 34, pp. 3725-3737, 2007.##
[18] Z.  Liao  and  J.  Rittscher, “A multi-objective supplier selection model under stochastic demand conditions,”International Journal of Production Economics, vol. 105, pp. 150-159, 2007.##
[19] D. D. Wu, Y. Zhang, D. Wu, and  D. L. Olson, “Fuzzy multi-objective programming for supplier selection and risk modeling: A possibility approach,” European journal of operational research, vol. 200, pp. 774-787, 2010.##
[20] S. H. Amin  and G. Zhang, “An integrated model for closed-loop supply chain configuration and supplier selection: Multi-objective approach,” Expert Systems with Applications, vol. 39, pp. 6782-6791, 2012.##
[21] F. Arikan, “A fuzzy solution approach for multi objective supplier selection,” Expert Systems with Applications, vol. 40, pp. 947-952, 2013.##
[22] S. Nazari-Shirkouhi, H. Shakouri, B. Javadi, and
A. Keramati, “Supplier selection and order allocation problem using a two-phase fuzzy multi-objective linearprogramming,”  vol. 37, pp. 9308-9323, 2013.##
[23] O. M. I. D. Jadidi, S. Zolfaghari, and S. Cavalieri,
“A new normalized goal programming model for multi-objective problems: A case of supplier selection and order allocation,” International Journal of Production Economics, vol. 148, pp. 158-165, 2014.##
[24] R. Narasimhan, S. Talluri, and S.K. Mahapatra, “Multiproduct, multicriteria model for supplier selection with product life‐cycle considerations,”  vol. 37, pp. 577-603, 2006.##
[25] K. Shaw, R. Shankar, S. S. Yadav, and L. S. Thakur, “Supplier selection using fuzzy AHP and fuzzy multi-objective linear programming for developing low carbon supply chain,” EXPERT SYST APPL, vol. 39, pp. 8182-8192, 2012.##
[26] K. S. Moghaddam, "Fuzzy multi-objective model for supplier selection and order allocation in reverse logistics systems under supply and demand uncertainty,”  vol. 42, pp. 6237-6254, 2015.##
[27] D. Kannan, R. Khodaverdi, L. Olfat, A. Jafarian, and A. Diabat, “Integrated fuzzy multi criteria decision making method and multi-objective programming approach for supplier selection and order allocation in a green supply chain,” Journal of Cleaner production, vol. 47, pp. 355-367, 2013.##
[28] S. Deng, R. Aydin, C.K. Kwong, and Y. Huang “Integrated product line design and supplier selection: A multi-objective optimization paradigm,” Computers and Industrial Engineering, vol. 70, pp. 150-158, 2014.##
[29] S. DuHadway, S. Carnovale, and B. Hazen, “Under standing risk management for intentional supply chain disruptions: Risk detection, risk mitigation, and risk recovery,” Annals of Operations Research, vol. 283, pp. 179-198, 2019.##
[30] V. Gupta  and D. Ivanov, “Dual sourcing under supply disruption with risk-averse suppliers in the sharing economy,” International Journal of Production Research, vol. 58, pp. 291-307, 2020.##
[31] M. A. Qureshi, S. Sohu, and M. A. Keerio, “The impacts of operational risks in the supply chain of construction projects in Malaysia,” Tehnički vjesnik, vol.27, pp. 1887-1893, 2020.##
[32] T. Wu, J. Blackhurst, and P. O’grady, “Methodology for supply chain disruption analysis,” vol. 45, pp.1665-1682, 2007.##
[33] B. Tomlin, “On the value of mitigation and contingency strategies for managing supply chain disruption risks,” Management science, vol. 52, pp. 639-657, 2006.##
[34] E. Shahvand, M. H. Sebt, and M. T. Banki, “Supply Chain Management Improvement through Value Engineering Approach in the Construction Industry,” Amirkabir Journal of Civil Engineering, vol.45, pp. 31-40, 2015. (In Persian)##
[35] A. Malek Kavkani, “Supply Chain Management and Optimal Selection of Materials in Civil Engineering Projects for Achieving Sustainable Development,” Fourth National Conference on Applied Research in Civil Engineering, Architecture and Urban Management, Tehran, 2016. (In Persian)##
[36] E. Najafi, and H. Rajaei, “Supply Management of Materials (Supply Chain) in the Portfolio of Civil Projects,”Second National Conference on Engineering and Construction Management, Bandar Abbas, 2012. (In Persian)##
[37] G. Mavrotas, “Effective implementation of the ε-constraint method in multi-objective mathematical programming problems,” Applied mathematics and computation, vol. 213, pp. 455-465, 2009.##