حل یک مساله حمل ونقل مکان یابی -مسیریابی با در نظرگرفتن مسیرهای حمل سبز با استفاده ازیک الگوریتم فراابتکاری

نوع مقاله : پژوهشی

نویسندگان

1 استاد دانشگاه صنعتی امیرکبیر، تهران، ایران

2 کارشناسی ارشد مهندسی صنایع، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

یکی از مهم­ترین مسائل پیش روی شرکت‌های توزیع کالا، طراحی و تحلیل شبکه توزیع است. امروزه به دلیل آلودگی بیش‌ازحد محیط‌زیست اتخاذ تصمیم­های بهینه برای کاهش انتشار گازهای آلاینده اهمیت یافته است. در این پژوهش، سعی بر آن است تا با ارائه مدلی به مکان‌یابی مناسب مراکز توزیع و مسیریابی وسایل نقلیه از این مراکز جهت سرویس­دهی به مشتریان پرداخته شود. هدف این پژوهش کاهش هزینه‌های توزیع و مصرف سوخت و به‌تبع آن کاهش انتشار آلاینده کربن­دی­اکسید است. همچنین تلاش بر این بوده که با متعادل‌سازی بار کاری در هریک از مسیرها رضایتمندی رانندگان ناوگان حمل‌ونقل افزایش یابد. در ابتدا یک مدل ریاضی برای مسئله موردبررسی پیشنهاد شده و بعد از خطی‌­سازی مدل پیشنهادی، این مدل در اندازه کوچک صحه­گذاری شده است. به‌علاوه با توجه به ماهیت سخت مسئله، برای حل مدل در ابعاد بزرگ، یک الگوریتم بهینه­سازی چندهدفه مورداستفاده قرار گرفته است. شایان‌ذکر است به دلیل دست‌یابی به جواب­های بهتر مسئله مکان­یابی تسهیلات و مسیرهای توزیع کالا به‌صورت هم‌زمان در نظر گرفته شده است. در انتها نیز عملکرد الگوریتم با معرفی 4 شاخص مختلف مورد ارزیابی قرار گرفته و نتایج عددی گزارش شده است. این نتایج نشان می­دهد که الگوریتم پیشنهادی کارایی لازم برای تولید جواب­های پارتو باکیفیت را دارا می­باشد که این جواب‌ها به‌صورت یکنواخت در فضای جواب مسئله پراکنده شده ­اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Solving a Location Routing Problem Considering Green Routes Using a Metaheuristic Algorithm

نویسندگان [English]

  • S.M.T. Fatemi Ghomi 1
  • Bahare Asgarian 2
1 Manager of Industrial Production Group
2 Department of Industrial Engineering,Amirkabir University of Technology,Tehran,Iran
چکیده [English]

Design and analysis of distribution systems are among the key factors which have been of interest to logistics corporations in recent years. Two main elements in designing a distribution network are finding acceptable locations for facilities and effective routes. Simultaneous consideration of these two elements is called location routing problem. Nowadays, because of environment pollutions, making good decisions about declining the CO2 emission rate has become a critical issue. The main contributor in CO2 emissions are fleet vehicles. This paper aims to propose a new mathematical model for the location routing problem in order to reduce the distribution and hence the fuel costs which in turn lead to CO2 emission rate reduction. Driver satisfaction is also pursued by balancing the drivers' workloads. A mathematical model is proposed for the problem and then linearized and validated for small scale conditions. As the large scale problem has many complexities, a multipurpose optimization algorithm, namely the NSGA-II algorithm which is a well-known metaheuristic algorithm is applied. To obtain a better solution, facility locations and route allocations are considered simultaneously. The algorithm performance is evaluated by introducing 4 indicators and the numerical results are reported. The results show that the suggested algorithm has the required efficiency to produced high quality parato solutions which are uniformly distributed in the problem's solution space.
 
 
 
 
 
 

کلیدواژه‌ها [English]

  • Facility Location Problem
  • Location Routing
  • Pollutant Emission
  • Multi-Objective Problem
  • Commodity Distribution
A. Sbihi and R.W. Eglese, “Combinatorial optimization and green logistics”, 4OR, vol. 5(2), pp. 99-116, 2007.
[1]
H. Farrokhi-Asl, R. Tavakkoli-Moghaddam, B. Asgarian, and E. Sangari, “Metaheuristics for a bi-objective location-routing-problem in waste collection management”, Journal of Industrial and Production Engineering, vol. 34(4), pp. 239-252, 2017.
[2]
C. D. T. Watson-Gandy and P. J. Dohrn, “Depot location with van salesmen—a practical approach”, Omega, vol. 1(3), pp. 321-329, 1973.
[3]
S. Salhi, and, G.K. Rand, “The effect of ignoring routes when locating depots”, European journal of operational research, vol.39 (2), pp. 150-156, 1989.
[4]
Z. Özyurt and D. Aksen, “Solving the multi-depot location-routing problem with lagrangian relaxation”, In Extending the horizons: Advances in computing, optimization, and decision technologies (pp. 125-144). Springer, Boston, MA, 2007.
[5]
J. Rieck, C. Ehrenberg, and J. Zimmermann, “Many-to-many location-routing with inter-hub transport and multi-commodity pickup-and-delivery”, European Journal of Operational Research, vol. 236(3), pp. 863-878, 2014.
[6]
V.P. Nguyen, C. Prins, and C. Prodhon, “Solving the two-echelon location routing problem by a GRASP reinforced by a learning process and path relinking” European Journal of Operational Research, vol. 216(1), pp. 113-126, 2012.
[7]
S. Rath, and W.J. Gutjahr, “A math-heuristic for the warehouse location–routing problem in disaster relief” Computers & Operations Research,  vol. 42, pp. 25-39, 2014.
[8]
I. Rodríguez-Martín, J. J. Salazar-González, and H. Yaman, H. “A branch-and-cut algorithm for the hub location and routing problem” Computers & Operations Research, vol. 50, pp. 161-174, 2014.
[9]
E. Miandoabchi and R.Z. Farahani, “Optimizing reserve capacity of urban road networks in a discrete network design problem” Advances in Engineering Software, vol. 42(12), pp. 1041-1050, 2011.
[10]
I. A. Martínez-Salazar, J. Molina, F. Ángel-Bello, T. Gómez, and R. Caballero, “Solving a bi-objective transportation location routing problem by metaheuristic algorithms” European Journal of Operational Research, vol. 234(1), pp. 25-36, 2014.
[11]
C. Prodhon and C. Prins, “A survey of recent research on location-routing problems” European Journal of Operational Research, vol. 238(1), pp. 1-17, 2014.
[12]
G. Nagy and S. Salhi, “Location-routing: Issues, models and methods” European journal of operational research, vol. 177(2), pp. 649-672, 2007.
[13]
H. Farrokhi-Asl, A. Makui, A. Jabbarzadeh, and F. Barzinpour, “Solving a multi-objective sustainable waste collection problem considering a new collection network” Operational Research, vol. 20(4), pp. 1977-2015, 2020.
[14]
H. Park and J. Lim, “Valuation of marginal CO {sub 2} abatement options for electric power plants in Korea”, Energy Policy, vol. 37(5), pp.         1834-1841, 2009.
[15]
J. R. Swinton, “At what cost do we reduce pollution? Shadow prices of SO2 emissions” The Energy Journal, vol. 19(4), 1998.
[16]
N, Manavizadeh, H. Farrokhi-Asl, and S. F. WT Lim, “A New Mathematical Model for the Green Vehicle Routing Problem by Considering a Bi-Fuel Mixed Vehicle Fleet” Journal of Optimization in Industrial Engineering, vol. 13(2), pp. 165-183, 2020.
[17]
K. Salimifard, H. Shahbandarzadeh, and R.Raeesi, “Green transportation and the role of operation research”, In Int. Conf. Traffic Transp. Eng. (ICTTE 2012), Vol. 26, pp. 74-79, 2012.
[18]
T. Bektaş, and G. Laporte, “The pollution-routing problem”, Transportation Research Part B: Methodological, vol. 45(8), pp. 1232-1250, 2011.
[19]
S. Erdoğan, and E. Miller-Hooks, “A green vehicle routing problem” Transportation research part E: logistics and transportation review, vol. 48(1), pp. 100-114, 2012.
[20]
H. Farrokhi-Asl, A. Makui, R. Ghousi, and M. Rabbani, “Developing a hazardous waste management system with consideration of health, safety, and environment” Computers & Electrical Engineering, vol. 82, pp. 106553, 2020.
 
[21]
A. N. Sholichah, Y. Yuniaristanto, and I. Wayan Suletra. "Location Routing Problem with Consideration of CO2 Emissions Cost: A Case Study." Jurnal Teknik Industri, vol. 21(2), pp. 225-234, 2020.
[22]
M. Rabbani, H. Farrokhi-Asl, H. Rafiei, and R. Khaleghi, R. “Using metaheuristic algorithms to solve a dynamic cell formation problem with consideration of intra-cell layout design” Intelligent Decision Technologies, vol. 11(1), pp. 109-126, 2017.
[23]
A. Azadeh and H. Farrokhi-Asl, “The close–open mixed multi depot vehicle routing problem considering internal and external fleet of vehicles” Transportation Letters, vol. 11(2), pp. 78-92, 2019.
[24]
R. Rabbani and H. Farrokhi, “Integrating Data Envelopment Analysis and Reverse Auction Using Bi-level Programming Approach”, Supply Chain Management, vol. 20(59), pp. 69-83, 2018. (In Persian)
[25]
N. Srinivas, and K. Deb, K. “Muiltiobjective optimization using nondominated sorting in genetic algorithms” Evolutionary computation, vol.2 (3), pp. 221-248, 1994.
[26]
M. Rabbani, A. Nikoubin, and H. Farrokhi-Asl, “Using modified metaheuristic algorithms to solve a hazardous waste collection problem considering workload balancing and service time windows” Soft Computing, vol. 25(3), pp.       1885-1912, 2021.
[27]
M. Rabbani, R. Heidari, H. Farrokhi-Asl, and N. Rahimi, “Using metaheuristic algorithms to solve a multi-objective industrial hazardous waste location-routing problem considering incompatible waste types” Journal of Cleaner Production, vol. 170, pp. 227-241, 2018.
[28]