طراحی الگوی چابکی زنجیره تأمین صنایع معدنی کشور

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت صنعتی گرایش استراتژی صنعتی، گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران. ایران

2 دانشیار گروه ریاضی و علوم کامپیوتر، دانشکده علوم پایه، دانشگاه قم، قم، ایران

3 استاد گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

4 استادیار گروه مدیریت صنعتی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

هدف این پژوهش، شناسایی و تبیین عوامل اصلی سنجش چابکی در صنایع معدنی به‌عنوان مهم‌ترین صنعت غیرنفتی کشور است. این پژوهش، به لحاظ هدف، یک تحقیق کاربردی و از نظر روش، یک تحقیق ترکیبی می‌باشد. جامعه آماری تحقیق در بخش کیفی، خبرگان و صاحب‌نظران صنایع معدنی کشور و در بخش کمی، کارشناسان و خبرگان صنایع معدنی را شامل می‌شود، روش گردآوری اطلاعات از طریق پرسشنامه و نظرسنجی بوده است. در بخش کیفی، ابتدا با جستجوی مقالات پژوهشیِ مرتبط با موضوع به روش فراترکیب، 124 منبع انتخاب شده و 16 معیار سنجش چابکی شناسایی گردید که عبارت بودند از ارتباطات (فناوری اطلاعات)، مشتری مداری، برنامه­ریزی هماهنگ، توسعه مهارت کارکنان، ادغام فرایندها، رضایت ­مشتری، انعطاف­پذیری، کیفیت محصول، کاهش هزینه‌ها، حساسیت و پاسخگویی به بازار، نوآوری، ارائه محصولات جدید، سرعت تحویل، تغییرات تکنولوژی، آموزش و یادگیری و اعتماد که سپس از بین این معیارها با نظرسنجی از 20 نفر از خبرگان صنایع معدنی کشور به روش دلفی فازی 8 عامل اصلی کیفیت محصول، پاسخگویی به بازار، سرعت تحویل، انعطاف‌پذیری، کاهش هزینه­ها، نوآوری، مشتری­مداری، ارتباطات و فناوری اطلاعات استخراج، تائید و غربالگری شدند و سپس توسط روش دنپ (DANP) شاخص‌ها ارزیابی و اولویت‌بندی و عوامل شناسایی شده با استفاده از مدل‌سازی ساختاری تفسیری و تحلیل میک­مک در چهار سطح و دو دسته وابسته، مستقل قرار گرفتند. یافته‌های پژوهش نشان داد مشتری‌مداری عنصر زیربنایی چابکی زنجیره تأمین است که بر کاهش هزینه‌ها و نوآوری تأثیر می‌گذارد. کاهش هزینه‌ها و نوآوری نیز بر انعطاف‌پذیری، کیفیت محصول و ارتباطات اثر می‌گذارند؛ و در ادامه عوامل انعطاف‌پذیری، کیفیت محصول و ارتباطات بر پاسخگویی و سرعت تحویل اثرگذار هستند، در نهایت نیز سرعت تحویل و پاسخگویی به بازار موجب چابکی زنجیره تأمین می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Designing and Validating the Agility Model of the Supply Chain of the Country's Mining Industry

نویسندگان [English]

  • , saeed mahdavi 1
  • , Gholam Hassan Shirdel 2
  • , Reza Radfar 3
  • , mahmoud modiri 4
1 Department of Industrial Management, Faculty of Management and Economics, Islamic Azad University, Tehran Research Sciences Branch, Tehran, Iran
2 Department of Basic Sciences, Qom University, Iran
3 Department of Industrial Management, Faculty of Management and Economics, Islamic Azad University, Tehran Research Sciences Branch, Tehran, Iran
4 Assistant Professor of Management Department, Faculty of Management, South Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

The purpose of this study is to identify and explain the main factors measuring agility in the mining industry as the most important non-oil industry in the country. This research is an applied research in terms of purpose and a combined research in terms of method. The statistical population of the research in the qualitative and quantitative sections includes the experts, intellectuals and scholars of the country's mining industry. The methods of data collection are questionnaires and surveys. In the qualitative section, first, through finding related research articles by the meta-combination method, 124 sources are selected and 16 criteria for measuring agility are identified. These include communications (information technology), customer orientation, coordinated planning, staff skills development, process integration, customer satisfaction, flexibility, product quality, cost reduction, market sensitivity and responsiveness, innovation, new product launches, delivery speed, technology changes, training and learning and trust. With a survey of 20 experts in the country's mining industry by the fuzzy Delphi method, 8 main factors are extracted, validated and screened from the listed criteria, namely, the product quality, market responsiveness, delivery speed, flexibility, reduction costs, innovation, customer orientation, communications and information technology. These indicators are then evaluated and prioritized by the DANP method and the identified factors are classified into four levels and two dependent/independent groups using the interpretive structural modeling and micro-analysis. The findings show that customer orientation is an essential element of supply chain agility that reduces the costs and increases the innovation. Cost reduction and improved innovation in turn, affect flexibility, product quality and communications. Furthermore, flexibility, product quality and communications factors affect the responsiveness and the speed of delivery. Finally, the delivery speed and the market responsiveness lead to the desired supply chain agility.

کلیدواژه‌ها [English]

  • Agility
  • Country's Mining Industry
  • Partial Least Squares Method
  • Supply Chain
  • Structural Equation Modeling
  • Bani, S. Babaei Zakliki, and M. A. Hosseinzadeh Shahri, “Provide a model for agile supply chain with a meta-hybrid approach,” Management Research in Iran, vol. 25 (3), pp. 26-49, 2021. (In Persian)
  • Agarwal, R. Shankar, and M. K. Tiwari, “Modeling agility of supply chain, Industrial Marketing Management,” vol. 36, pp. 443-445, 2007.
  • Jindal, S. K. Sharma, K. S.Sangwan, & G. Gupta, "Modelling Supply Chain Agility Antecedents Using Fuzzy DEMATEL," Procedia CIRP, vol. 98, pp. 436-441, 2021.
  • J. Chen, "Developing a model for supply chain agility and innovativeness to enhance firms’ competitive advantage," Management Decision, vol. 36, pp. 342-344. 2019
  • M. Queiroz, S. F. Wamba, & R. M. Branski, "Supply chain resilience during the COVID-19: empirical evidence from an emerging economy," Benchmarking: An International Journal, 2021.
  • Dubey, D. J. Bryde, C. Foropon, T. M.iwari, Y. Dwivedi, & S. Schiffling, "An investigation of information alignment and collaboration as complements to supply chain agility in humanitarian supply chain," International Journal of Production Research, vol. 59(5), pp. 1586-1605, 2021.
  • M. Swafford, S. Ghosh, & N. Murthy, "Achieving supply chain agility through IT integration and flexibility," International Journal of Production Economics, vol. 116(2), pp. 288-297, 2008.
  • Bagheri, A. Toloui Ashlaghi, N. Pilehouri, and A. Pura Ebrahimi, "Designing a model for evaluating the impact of cloud generation on supply chain agility," Socio-cultural strategy, vol. 31, pp. 173-205, 2019. (In Persian)
  • Jamali, B. Bavarsad, and M. Safari, "Gradual analysis and evaluation of supply chain sustainability in order to improve the competitiveness of manufacturing industries," Supply chain management, vol. 23, No. 72, Fall 1400, pp. 1-7, 2021. (In Persian)
  • Shafiee, H. Saleh, and M. Ghaderi, "Supply chain modeling using data envelopment analysis and simulation of system dynamics," Scientific Journal of Supply Chain Management, vol. 23 (70), pp. 55-70, 2021. (In Persian)
  • Gligor, S. Bozkurt, I. Gölgeci, & M. J. Maloni, "Does supply chain agility create customer value and satisfaction for loyal B2B business and B2C end-customers?," International Journal of Physical Distribution & Logistics Management, 2020.
  • S. A. Sa'id, "The Impact of Market Orientation, Entrepreneurial Orientation, and Relationship Orientation on the International Performance of SMEs," In Multidisciplinary Perspectives on Cross-Border Trade and Business (pp. 203-221). IGI Global, 2022.
  • Li, L. Xu, & Y. Fan, "Cultural distance and customer orientation strategy of Chinese service MNEs under the belt and road initiative," Cross Cultural & Strategic Management, 2021
  • Yuan, H. Kim, and J. Guojun, "Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph. International Journal of Production Economics, vol. 165, pp. 223-233, 2018.
  • Fidel, W. Schlesinger, & E. Emilo, "Effects of customer knowledge management and customer orientation on innovation capacity and marketing results in SMES: the mediating role of innovation orientation," International Journal of Innovation Management, 22(07), 1850055, 2018.
  • Zadykowicz, K. J. Chmielewski, & D. Siemieniako, "Proactive customer orientation and joint learning capabilities in collaborative machine to machine innovation technology development: the case study of automotive equipment manufacturer," Oeconomia Copernicana, vol. 11(3), pp. 531-547, 2020.
  • Adams, I. M. B. Freitas, & R. Fontana, "Strategic orientation, innovation performance and the moderating influence of marketing management," Journal of Business Research, vol. 97, pp. 129-140, 2019.
  • Huo, M. Gu, & Z. Wang, "Supply chain flexibility concepts, dimensions and outcomes: an organisational capability perspective," International Journal of Production Research, vol. 56(17), pp. 5883-5903, 2018.
  • Sreedevi & H. Saranga, "Uncertainty and supply chain risk: The moderating role of supply chain flexibility in risk mitigation," International Journal of Production Economics, vol. 193, pp. 332-342, 2017.
  • J. Kull, J. Kotlar, & M. Spring, "Small and Medium Enterprise Research in Supply Chain Management: The Case for Single Respondent Research Designs," Journal of Supply Chain Management, vol. 54(1), pp. 23-34. 2018.
  • J. Hahn, "Industry 4.0: a supply chain innovation perspective," International Journal of Production Research, vol. 58(5), pp. 1425-1441, 2020.
  • Iida, "Coordination of cooperative cost-reduction efforts in a supply chain partnership," European Journal of Operational Research, vol. 222(2), pp. 180-190, 2012.
  • Y. Nie & C. Wang, "An analysis of cost-reduction innovation under capacity constrained inputs. Applied Economics," vol. 51(6), pp. 564-576, 2019.
  • MacGillivray, H. Jeffrey, M. Winskel, & I. Bryden, "Innovation and cost reduction for marine renewable energy: A learning investment sensitivity analysis," Technological Forecasting and Social Change, vol. 87, pp. 108-124, 2014.
  • Furst, & Schmidt, "Turbulent markets need flexible supply chain communication," Production Planning & Control, vol. 12(5), pp. 525-533, 2001.
  • Nguyen, H., Onofrei, G., & Truong, D. "Supply chain communication and cultural compatibility: performance implications in the global manufacturing industry," Business Process Management Journal, 2020.
  • Luu, "Market responsiveness: antecedents and the moderating role of external supply chain integration," Journal of Business & Industrial Marketing, 2017.
  • Seitz, V. A. and Massey Jr, T. K., "Toward Conceptualizing a Model of Direct Marketing Responsiveness in Consumer Environments," In Proceedings of the 1990 Academy of Marketing Science (AMS) Annual Conference, pp. 356-360, 2015.
  • Safari, R. Mansournia, and M. Children, "Presenting a model to identify the factors affecting organizational agility and its status Farhangian University," Research in educational systems. pp. 25-25, 2020. (In Persian)
  • S. Wei, S. Samiee, and R. P. Lee, "The influence of organic organizational cultures, market responsiveness, and product strategy on firm performance in an emerging market," Journal of the Academy of Marketing Science, vol. 42(1), pp. 49-70, 2014.
  • Zahed Babalan, A., Ghaleh, A., Deoband, A., Kazemi, S. "The mediating role of job motivation in the relationship between professional ethics and organizational accountability," Ethics in Science and Technology, pp. 123-129, 2020 . (In Persian)
  • Sardana, D., Terziovski, M. and Gupta, N., "The impact of strategic alignment and responsiveness to market on manufacturing firm's performance," International Journal of Production Economics, 177, pp. 131-138, 2016.
  • Hanssens, D. M., Pauwels, K. H., Srinivasan, S., Vanhuele, M. and Yildirim, G., "Consumer attitude metrics for guiding marketing mix decisions," Marketing Science, 33(4), pp. 534-550, 2016.
  • Nguyen, D. H., de Leeuw, S., Dullaert, W., & Foubert, B. P. "What is the right delivery option for you? Consumer preferences fordelivery attributes in online retailing," Journal of Business Logistics, 40(4), pp. 299-321, 2019.
  • Fidel, P., Schlesinger, W., & Emilo, E. "Effects of customer knowledge management and customer orientation on innovation capacity and marketing results in SMES: the mediating role of innovation orientation," International Journal of Innovation Management, 22(07), 1850055. 2018.
  • Haya Fawzi, A., Ayman, B, A., , The effect of supply chain agility on export performance: The mediating roles of supply chain responsiveness and innovativeness, Journal of Manufacturing Technology Management, vol. 30, no. 5, pp. 821-839,  2021.
  • Shukor, A.Newaz, M. S.Rahman, M. K.and Taha, A. Z. , "Supply chain integration and its impact on supply chain agility and organizational flexibility in manufacturing firms," International Journal of Emerging Markets, vol. 16, no. 8, pp. 1721-1744, 2021.
  • Michael, J. Braunscheidel, N,. Suresh, C., "The organizational antecedents of a firm’s supply chain agility for risk mitigation and response," Journal of Operations Management vol. 27, Issue 2, , pp. 119-140, 2020.
  • MehmetBarut, Sener, A., Mutlu Y, A., "The role of information usage in a retail supply chain: A causal data mining and analytical modeling approach," Journal of Business Research, vol. 99,  pp. 87-104, June 2019.
  • Eric, W. T,. ChanAlan T. L., MoonKaren K. L.,() "The effects of strategic and manufacturing flexibilities and supply chain agility on firm performance in the fashion industry," European Journal of Operational Research, vol. 259, Issue 2, 1 June 2019, pp. 486-499, 2019.
  • Yuan, Zh, Zh,. Kim, H.,Guojun, J., "Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph," International Journal of Production Economics, 165, pp. 223-233, 2018.
  • Minhao, Zh, Ying, K, Tse., Pervaiz, A, "Embracing supply chain agility: an investigation in the electronics industry," Supply Chain Management, vol. 21, pp. 140-15, 2018.
  • Chung-Yean, Ch., Canan, K., Nallan, S., "Anempirical investigation of the impact of strategic sourcing and flexibility on firm's supply chain agility," International Journal of Operations &Production , vol. 32, Issue. 1, 2018.
  • Mohammadi, H., Khanlari, A,.. Masoumi Khalaji, H. R., "The Impact of Production and Strategic Flexibility and Supply Chain Agility on Performance (Case Study: Iran Khodro Company), The Second National Conference on Modern Studies in Economics, Management and Accounting In Iran, Tehran," 2021. (In Persian) https://civilica.com/doc/933960,
  • Davari, A.; Rezazadeh, . "Structural Equation Modeling with PLS Software," Tehran: Jihad Daneshgahi Publications, 2013. (In Persian)
  • Azar, A.; Khosravani, F.; Jalali, R "Research in Soft Operations," Industrial Management Organization Publications, 2019. (In Persian)
  • Henseler, J., Ringle, C. M., & Sarstedt, M. "A new criterion for assessing discriminant validity in variance-based structural equation modeling," Journal of the academy of marketing science, vol. 43(1), pp. 115-135, 2015.
  • Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295-33.
  • Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M., & Lauro, C. "PLS path modeling. Computational statistics & data analysis," vol. 48(1), pp. 159-205, 2005.
  • Wetzels, M., Odekerken-Schröder, G., & Van Oppen, C. "Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration," MIS quarterly, pp. 177-195, 2009.
  • Shafiee, M., Saleh, H., Ghaderi, M. "Supply chain modeling using data envelopment analysis and simulation of system dynamics," Scientific Journal of Supply Chain Management, 23 (70), 55-70, 2021. (In Persian)
  • Nozari, H., Ghahremani Nahr,, J. "Provide a framework for implementing agile big data supply chain," Innovation Management and Operational Strategies, 2 (2), pp.128-136 .(In Persian)