ارائه مدل ریاضی برای طراحی زنجیره تأمین تاب‌آور و پایدار زیست‌توده تحت عدم قطعیت و اختلال

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی صنایع، دانشکده فنی، دانشگاه یزد، یزد، ایران

2 استاد، گروه مهندسی صنایع، دانشکده فنی، دانشگاه یزد، یزد، ایران،

3 استاد، گروه مهندسی صنایع، دانشکده فنی، دانشگاه یزد، یزد، ایران

4 استاد گروه مهندسی صنایع، دانشکده فنی، دانشگاه یزد، یزد، ایران

چکیده

تصمیمات طراحی شبکه زنجیره تأمین زیست‌توده مهم‌ترین بخش از تصمیمات سطح استراتژیک مدیریت زنجیره تأمین را تشکیل می‌دهند که شامل تعیین مکان تسهیلات، تعداد و ظرفیت آن‌ها، تخصیص آن‌ها به منابع و بازارهای مختلف و جریان ادغامی بین تسهیلات می‌باشند. طراحی مناسب روی انعطاف‌پذیری، کارایی و در نتیجه عملکرد زنجیره تأمین زیست‌توده تأثیر به‌سزایی دارد. در این مقاله ارائه مدل ریاضی با رویکرد بهینه‌سازی استوار جهت طراحی زنجیره تأمین تاب‌آور و پایدار زیست‌توده تحت عدم قطعیت در تقاضای انرژی زیستی و اختلال در پالایشگاه انرژی زیستی ارائه شده است. با تعیین عوامل تاب‌آوری و شاخص‌های پایداری، رابطه عوامل تاب‌آوری تعیین شد و سپس با استفاده از تاپسیس فازی عوامل تاب‌آوری اولویت‌بندی شد. عوامل تاب‌آوری با اولویت بالا در مدل ریاضی در نظر گرفته شده است. در تابع هدف اول حداکثرسازی سود با در نظر گرفتن کلیه هزینه‌های پایداری و جریمه کمبود یا مازاد تقاضای انرژی زیستی و حداقل‌سازی عوامل تاب‌آوری z1 ارائه شده است. علاوه بر این از روش روباست برای غلبه بر عدم قطعیت در تقاضای انرژی زیستی پیشنهاد و نتایج حل مدل با نرم‌افزار GAMS برای نشان دادن قابلیت مدل و تحلیل حساسیت پارامترهای اساسی ارائه شده است. یکی از نوآوری‌های این مقاله ارائه نحوه سنجش تاب‌آوری بر اساس ظرفیت باقی‌مانده بعد از اختلال نسبت به قبل از بروز اختلال بوده که در محدودیت اول ارائه شده است. در پایان پارامترها در مدل ریاضی، با استفاده از یک مطالعه موردی در سازمان انرژی‌های تجدیدپذیر و بهره‌وری انرژی، آزمایش عددی، شدنی و کاربردپذیر بودن رویکرد پیشنهادی تحقیق مورد آزمایش قرار گرفت و نتایج نشان‌دهنده کارایی ارزشمند مدل پیشنهادی در افزایش عملکرد زنجیره تأمین زیست‌توده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Mathematical Model for Designing a Resilient and Sustainable Biomass Supply Chain Under Uncertainty and Disruption

نویسندگان [English]

  • Someieh Salehi 1
  • Yahia Zare Mehrjerdi 2
  • Ahmad Sadegheih 3
  • Hasan Hoseini Nasab 4
1 Yazd, Safaeieh, Yazd University, Department Of Industrial Engineering,
2 Yazd, Safaeieh, Yazd University, Department Of Industrial Engineering,
3 Head of Department, Faculty of Industrial Engineering, Yazd University
4 Yazd, Safaeieh, Yazd University, Department Of Industrial Engineering,
چکیده [English]

Biomass supply chain network design decisions are the most important part of the strategic level of supply chain management decisions, which include determining the location of facilities, their number and capacity, their allocation to different resources and markets, and the integration flow among facilities. An appropriate design has a significant influence on flexibility, efficiency and consequently the performance of the biomass supply chain. In this paper, a mathematical model with a robust optimization approach is presented to design a resilient and sustainable biomass supply chain under uncertainty in bioenergy demand and disruption in bioenergy refinery. By determining resilience factors and sustainability indicators, the relationship between resilience factors was determined and then the resilience factors were prioritized using fuzzy TOPSIS. Resilience factors with high priority are considered in the mathematical model. The first objective function considers profit maximization by considering all sustainability costs and the penalty of shortage or surplus of bioenergy demand and minimizing resilience factors . In addition, Robust method is proposed to overcome the uncertainty in bioenergy demand and the results of model solving with GAMS software are presented to show the model capability and sensitivity analysis of basic parameters. One of the innovations of this paper is to provide a way to measure resiliency based on the residual capacity after the disruption compared to before the disruption, which is presented in the first constraint. Finally, the parameters in the mathematical model are tested using a case study in the Organization of Renewable Energy and Energy Efficiency through numerical, feasibility and applicability of the proposed research approach. The obtained results show the valuable efficiency of the proposed model in increasing the biomass supply chain performance.

کلیدواژه‌ها [English]

  • Robust Optimization
  • Biomass Supply Chain Network Design
  • Resilience
  • Sustainability
  • Uncertainty
  • Disruption
  • Ghaderi, MS. Pishvaee and A. Moini, "Biomass supply chain network design: an optimization-oriented review and analysis," Ind Crop Prod, Vol. 94, pp. 972–1000, 2016.
  • Ebadian, "Design and Scheduling of Agricultural Biomass Supply Chain for a Cellulosic Ethanol Plant," Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2013.
  • Yue, F. You and S. W. Snyder, "Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges," Comput Chem Eng, Vol. 66, pp. 36–56, 2014.
  • Fattahi, K. Govindan and M. Farhadkhani, Sustainable supply chain planning for biomass-based power generation with environmental risk and supply uncertainty considerations: a real-life case study, Int J Prod Res, Vol. 59, Issue 10, pp. 3084-3108, 2021.
  • D. Tordecilla, A. A. Juan, J. R. Montoya-Torres, C. L. Quintero-Araujo and J. Panadero, Simulation-optimization methods for designing and assessing resilient supply chain networks under uncertainty scenarios: A review, SIMULAT PRACT THEORY, Vol.106, 102166, 2021.
  • Khezerlou, B.Vahdani and M. Yazdani, Designing a resilient and reliable biomass-to-biofuel supply chain under risk pooling and congestion effects and fleet management, J. Clean. Prod, Vol. 281, 125101, 2021.
  • Jayarathna, G. Kent and I. O'Hara, Spatial optimization of multiple biomass utilization for large-scale bioelectricity generation, J. Clean. Prod, Vol. 319, 128625, 2021.
  • Moheb-Alizadeh, R. Handfield and D. Warsing, Efficient and sustainable closed-loop supply chain network design: A two-stage stochastic formulation with a hybrid solution methodology, J. Clean. Prod, Vol. 308, 127323, 2021.
  • Aldrighetti, D. Battini, D. Ivanov and I. Zennaro, Costs of resilience and disruptions in supply chain network design models: a review and future research directions, INT J PROD ECON, Vol. 235, 108103, 2021.
  • Khishtandar, Simulation based evolutionary algorithms for fuzzy chance-constrained biogas supply chain design, APPL ENERG, Vol. 236, pp. 183-195, 2019.
  • Kumar and et al., Emerging approaches in lignocellulosic biomass pretreatment and an aerobic bioprocesses for sustainable biofuels production, J. Clean. Prod, Vol. 333, 130180, 2021.
  • Saghaei, H. Ghaderi and H. Soleimani, Design and optimization of biomass electricity supply chain with uncertainty in material quality, availability and market demand, ENERGY, Vol. 197, 117165, 2020.
  • Fattahi, K. Govindan and R. Maihami, Stochastic optimization of disruption-driven supply chain network design with a new resilience metric, INT J PROD ECON, Vol. 230, 107755, 2020.
  • S. Golan, L. H. Jernegan and I. Linkov, Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic, Environment Systems and Decisions, Vol. 40, 222-243, 2020.
  • G. Durmaz and B. Bilgen, Multi-objective optimization of sustainable biomass supply chain network design, APPL ENERG, Vol. 272, 115259, 2020.
  • N. Emenike and G. Falcone, A review on energy supply chain resilience through optimization, RENEW SUST ENERG REV, Vol. 134, 110088, 2020.
  • Mousavi Ahranjani, S. F. Ghaderi, A. Azadeh and R. Babazadeh, Robust design of a sustainable and resilient bioethanol supply chain under operational and disruption risks, CLEAN TECHNOL ENVIR, Vol. 22, pp. 119-151, 2020.
  • L. Ngan, et al., A hybrid approach to prioritize risk mitigation strategies for biomass polygeneration systems, RENEW SUST ENERG REV, Vol. 121, 109679, 2020.
  • Abbaszade Narmighi and et al., “Design and optimization of a waste management model in the sustainable supply chain in mining,” Scientific Journal of Supply Chain Management, Imam Hossein University, Vol. 22, 67-82, 2020, (In Persian).

F. Derakhshi Khajeh, and Y. Jabarzadeh, “Developing a causal model of factors influencing supply chain resilience,” Scientific Journal of Supply Chain Management, Imam Hossein University, Vol. 22, 56-73, 2020(In Persian).