توسعه مدل انتخاب تأمین کنندگان با استفاده از تکنیک تصمیم گیری چندمعیاره فازی با فرض وابستگی معیارها

نویسندگان

1 دانشگاه جامع امام حسین(ع)، نویسنده پاسخگو

2 دانشگاه جامع امام حسین (ع)

چکیده

با توجه به رقابت شدید، پیشرفت سریع تکنولوژی، چرخه کوتاه تولید و نیاز به خدمت­ دهی در سطح بالا به مشتری، دیگر شرکت­ها نمی­ توانند به تنهایی از عهده همه فعالیت­ های خود بر آیند به­ طوری که امروزه رقابت از سطح سازمان­ها به سطح زنجیره عرضه حرکت کرده است و شاخص خدمات مطلوب در سیستم نظام­گرا در طول زنجیره عرضه مورد نظر می­ باشد. در چارچوب این زنجیره، شرکت­ها مجبورند قسمتی یا تمامی عملیات تولیدی خود را در خارج از سازمان توسط تأمین کنندگان انجام دهند. در این جاست که شرکت­ها، تأمین­ کنندگان خود را به عنوان یکی از حلقه­ های بسیار مهم زنجیره عرضه تلقی کرده و از این‌رو تأمین­ کنندگان قسمت عمده­ای از انجام عملکردها و فرآیندهای تأثیرگذار بر کیفیت محصول یا خدمات نهایی شرکت­ها را به­ عهده دارند. اهمیت مسئله انتخاب تأمین کننده تا آنجاست که پیوند استراتژیک و مناسب با تأمین­ کنندگان مناسب می­ تواند موجب رشد و شکوفایی سازمان شود و بالعکس عدم انتخاب درست تأمین­ کنندگان می­ تواند موجب رکود و حتی زوال سازمان گردد. در تحقیقات گذشته که با تصمیم‌ گیری چند معیاره و روش­ های دیگر انجام شده است، معیارهای انتخاب تأمین کننده عمدتاً از یکدیگر مستقل فرض شده‌اند و تأثیر آنها بر یکدیگر و بر فرآیند انتخاب کمتر مورد توجه قرار گرفته شده است. این در حالی است که اغلب معیارها از یکدیگر مستقل نمی‌باشند و اثرات ترکیبی که بر یکدیگر و در نتیجه بر کل فرآیند ارزیابی می‌گذارند باید مد نظر قرار گیرد[1]. در این مقاله روشی برای تصمیم­ گیری چند معیاره جهت انتخاب تأمین کننده مناسب، پیشنهاد می­ گردد که علاوه بر وزن­دهی داده محور و وزن دهی کارشناس محور، به بررسی روابط موجود بین معیارها نیز می­ پردازد. برای به‌ کارگیری عدم قطعیت موجود در تصمیم‌ گیری و واقعی‌تر شدن نتایج حاصل از آن، اعداد فازی نیز در مدل پیشنهادی به­ کار گرفته شده است. در این تحقیق فرض بر این است که معیارهای اصلی، مستقل از هم بوده، ماتریس مقایسه به دست آمده از نظرات کارشناسان سازگار و وزن نظرات همه کارشناسان یکسان می­ باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Development of the Supplier Selection Model by Applying Fuzzy MCDM Technique with Regarding to Criteria Interdependence

چکیده [English]

Due to intense competition, rapid advances in technology, short product cycles and the need to give high levels of customer service, companies can not afford to own all of their activities. So that today the level of competition has moved from companies to the level of supply chain and optimal index in service-oriented systems throughout the supply chain system is desired. Within this chain, companies are forced to do part or all of their manufacturing operations out of the organization by suppliers. This is where companies consider their suppliers, as one of the important supply chain rings. Thus, the suppliers are responsible for the vast majority of processes affecting performance and quality of the final product or service.. In the past, researches that have been done with other methods of multiple criteria decision making, supplier selection criteria are assumed to be largely independent of each other and their impact on each other and selection process, has been little attentioned. While these criteria are often not independent of each other and the combined effects on each other and thus affect the overall evaluation process should be considered.
In this paper, a method for multi-criteria decision making to supplier selection is proposed that In addition to the expert-based and data-based weights, consider the relationship between the criteria. Handling uncertainty in decision-making and realistic results, fuzzy numbers in the proposed model is applied. In this study it is assumed that the primary criteria are independent, compared matrix extracted from the weight of expert opinions are compatible and the weight of opinions of all experts alike are equal.

کلیدواژه‌ها [English]

  • Supply Chain- Supplier- Supplier Selection- Multi Criteria Decision Making (MCDM)
  • Fuzzy Multi Criteria Decision Making (FMCDM)
[1] Yang, J.L., Chiu, H.N.,  Tzeng, G.H., and Yeh, R.H., (2008), Vendor selection with independent and interdependent relationships, Information Sciences, 178, 4166-4183.
[2] Barbarosoglu, G. and Yazgac, T., (1997), An application of the analytic hierarchy process to the supplier selection problem, Production and Inventory Management Journal 1st quarter, 14-21.
[3] Benton, W.C., (1991), Quantity discount decisions under conditions of multiple items, multiple
[4] Timmerman, E., (1986), An approach to vendor performance evaluation, Journal of Purchasing and Supply Management, 1, 27-32.
[5] Zenz, G., (1981), Purchasing and the Management of Materials, Wiley, New York.
[6] Gregory, R.E., (1986), Source selection: a matrix approach, Journal of Purchasing and Materials Management, 22 (2), 24-29.
[7] Soukup, W.R., (1987), Supplier selection strategies, Journal of Purchasing and Materials Management, 23 (3), 7-12.
[8] Nydick, R.L., Hill, R.P., (1992), Using the Analytic Hierarchy Process to structure the supplier selection procedure, International Journal of  Purchasing and Materials Management, 28 (2), 31-36.
[9] Sarkis, J. and Talluri, S., (2000), A model for strategic supplier selection, In: Leenders, M. (Ed.), Proceedings of the 9th international IPSERA Conference, Richard Ivey Business School, London, Ontario, 652-661.
[10] Willis, T.H., Huston, C.R. and Pohlkamp, F., (1993), Evaluation measures of just-in-time supplier performance, Production and Inventory Management Journal, 2nd quarter, 1-5.
[11] Petroni, A. and Braglia, M., (2000), Vendor selection using principal component analysis, The Journal of Supply Chain Management: A Global Review of Purchasing and Supply, 36 (2), 63-69.
[12] Thompson, K., (1990), Vendor prole analysis, Journal of Purchasing and Materials Management, 26 (1), 11-18.
[13] Thompson, K., (1991), Scaling evaluative criteria and supplier performance estimates in weighted pint prepurchase decision models, International Journal of Purchasing and Materials Management, 27 (1), 27-36.
[14] Ellram, L. M., (1990), The supplier selection decision in strategic partnerships, Journal of Purchasing and Material Management, 26(4), 8–12.
[15] Smytka, D.L. and Clemens, M.W., (1993), Total cost supplier selection model: a case study, International Journal of Purchasing and Materials Management, 29 (1), 42-49.
[16] Monczka, R.M. and Trecha, S.J., (1988), Cost-based supplier performance evaluation, Journal of Purchasing and Materials Management, 24 (2), 2-7.
[17] Chaudhry, S.S., Forst, F.G. and Zydiak, J.L., (1993), Vendor selection with price breaks, European Journal of Operational Research, 70, 52-66.
[18] Das, C. and Tyagi, R., (1994), Wholesaler: a decision support system for wholesale procurement and distribution, International Journal of Physical Distribution and Logistics Management, 24 (10), 4-12.
[19] Weber, C.A. and Current, J.R., (1993), A multi-objective approach to vendor selection, European Journal of Operational Research, 68, 173-184.
[20] Buffa, F.P. and Jackson, W.M., (1983), A goal programming model for purchase planning, Journal of Purchasing and Materials Management, 19 (3), 27-34.
[21] Degraeve, Z. and Roodhooft, F., (2000), A mathematical programming approach for procurement using activity based costing, Journal of Business Finance and Accounting, 27 (1- 2), 69- 98
[22] Degraeve, Z. and Roodhooft, F., (1998), Determining sourcing strategies: a decision model based on activity and cost driver information, Journal of the Operational Research Society, 49 (8), 781- 789.
[23] Pan, A.C., (1989), Allocation of order quantities among suppliers, Journal of Purchasing and Materials Management, 25 (2), 36-39.
[24] Rosenthal, E.C., Zydiak, J.L. and Chaudhry, S.S., (1995), Vendor selection with bundling, Decision Sciences, 26 (1), 35-48.
[25] Sadrian, A.A., Yoon, Y.S., (1994), A procurement decision support system in business volume discount environments, European Journal of Operational Research, 42 (1), 14-23.
[26] Weber, C.A. and Desai, A., (1996), Determination of paths to vendor market efficiency using parallel co-ordinates representation: a negotiation tool for buyers, European Journal of Operational Research, 90, 142-155.
[27] Weber, C.A., Current, J.R. and Desai, A., (1998), Non-cooperative negotiation strategies for vendor selection, European Journal of Operational Research, 108, 208-223.
[28] Weber, C.A., Current, J.R. and Desai, A., (2000), An optimization approach to determining the number of vendors to employ, Supply Chain Management: an International Journal, 5 (2), 90-98.
structure, International Fuzzy Engineering Symposium, 12, 415-421.
[29] Karpak, B., Kumcu, E. and Kasuganti, R., (1999), An application of visual interactive goal programming: a case in vendor selection decisions, Journal of Multi-Criteria Decision Analysis, 8, 93-105.
[30] Liu, X., and Pedrycz, W., (2009), Axiomatic Fuzzy Set Theory and Its Applications, Springer.
[31]  Zhang, Z., Lei, J., Cao, N., To, K. and Ng, K., (2005), Evolution of Supplier Selection Criteria and Methods, International Journal of Production Economic, 116, 199- 218.
[32] Ronen, B., Trietsch, D., (1988), A decision support system for purchasing management of large projects, Operations Research, 36 (6), 882-890.
[33] Tracey, M. and Tan, C. L., (2001), Empirical analysis of supplier selection and involvement, customer satisfaction, and firm performance, Supply Chain Management: An International Journal, 6 (4), 174-188.
[34] De Boer, L., Labro, E. and Morlacchi, P., (2001), A review of methods supporting supplier selection, European Journal of Purchasing and Supply Management, 7, 75–89.
[35] De Boer, L., Labro, E. and Morlacchi, P., (2001), A review of methods supporting supplier selection, European Journal of Purchasing and Supply Management, 7, 75–89.
[36] Ng, S.T. and Skitmore, R.M., (1995), CP-DSS: decision support system for contractor prequalification: Decision Making Problem Solving, Civil Engineering Systems, 12 (2), 133-160.
[37] Vokurka, R.J., Choobineh, J. and Vadi, L., (1996), A prototype expert system for the evaluation and selection of potential suppliers, International Journal of Operations and Production Management, 16 (12), 106 -127.
[38] Niakan, H., Zowghi, M., Bakhshandeh-Fard, A., (2011), A Fuzzy Objective and Subjective Decision Making Method by Non-Linear Normalizing and Weighting Operations, International Conference on Management and Service Science (MASS), 1 – 4.
[39] Bakhshandeh-Fard, A., Zowghi, M., Niakan, H., (2012), Supplier Evaluation and Selection by a Hybrid Fuzzy Approach, Science Series Data Report, 1, 4-11.
[40] Murat, B., Cagdas, A., Cem, K., (2008), Conducting fuzzy division by using linear programming, WSEAS TRANSACTIONS on INFORMATION SCIENCE & APPLICATIONS, 6, Vol 5.
[41] Jonathan, L., Jong, Y., (1998), Fuzzy decision making through trade-off analysis between criteria, Journal of Information Sciences 107, 107- 126.