بهینه‌سازی چندهدفه مسائله مکان‌یابی تسهیلات و مسیریابی باز در طراحی زنجیره تأمین مصالح ساختمانی: مدل ریاضی و الگوریتم‌های فرا ابتکاری

نوع مقاله : پژوهشی

نویسنده

گروه مهندسی صنایع، دانشکده فنی مهندسی،دانشگاه پیام نور، تهران، ایران

چکیده

در این تحقیق مسئله مکان­یابی و مسیریابی باز در زنجیره تأمین چهار سطحی شامل تأمین‌کنندگان، تولیدکنندگان، مراکز توزیع و خرده­فروشان به‌عنوان یک مدل ریاضی چندهدفه با در نظر گرفتن عوامل توسعه پایدار ارائه‌شده است. حمل‌ونقل مواد بین تمام سطوح به‌صورت مستقیم بوده و بین مراکز توزیع و مشتریان و همچنین تولیدکنندگان با مشتریان مسیریابی انجام می­شود. جریان مواد خام بین تأمین‌کنندگان و تولیدکنندگان بر اساس مشخصات فنی محصولات نهایی خواهد بود. به‌عبارت‌دیگر، برای هر محصول نهایی، ترکیب موردنیاز از مواد خام به‌عنوان پارامتر ورودی مشخص‌شده و بر اساس آن میزان موردنیاز از مواد خام برای تولید هر محصول تعیین می­گردد. در بسیاری از تحقیقات، فرض بر این است که وسایل حمل‌ونقل متعلق به خود سازمان بوده و پس از ارائه خدمت باید به مرکز توزیع بازگردند. در مراکز توزیع نیز به‌منظور ایجاد انعطاف­پذیری در تأمین تقاضای مشتریان، سطوح مختلف ظرفیتی در نظر گرفته‌شده که استفاده از هر سطح ظرفیتی دارای میزان هزینه، اثرات زیست‌محیطی و اثرات اجتماعی متفاوتی است جهت حل مدل ریاضی از روش محدودیت اپسیلون در ابعاد کوچک؛ و الگوریتم­های فرا ابتکاری NSGAII، PESAII و MOGWO در حل مسائل با ابعاد بزرگ استفاده‌شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Multipurpose optimization of facility location and open routing problem in building material supply chain design: mathematical models and trans-innovative algorithms

نویسنده [English]

  • mohammadreza jafari
چکیده [English]

In this research, the issue of open location and routing in the four-tier supply chain, including suppliers, manufacturers, distribution centers and retailers, is addressed using a multi-objective mathematical model and taking into account the factors of sustainable development. Material transportation between all levels is direct and is routed between distribution centers and customers as well as manufacturers with customers. The flow of raw materials between suppliers and producers will be based on the technical specifications of the final products. In other words, for each final product, the required composition of raw materials is determined as the input parameter and based on that, the required amount of raw materials for the production of each product is estimated. In many studies, it is assumed that the vehicles are assets to the organization and must return to the distribution center after providing the service. In distribution centers, in order to create flexibility in meeting customer demand, different capacity levels are considered, with the employment of each capacity level having different environmental and social effects and are solved using the mathematical model of the Epsilon constraint method in small dimensions. NSGAII, PESAII and MOGWO meta-heuristic algorithms have been used to solve large-scale problems.

کلیدواژه‌ها [English]

  • Sustainable construction supply chain
  • Multi-objective optimization
  • Direct delivery
  • Meta-heuristic algorithms
[1] Irizarry, J., E.P. Karan, and F. Jalaei, Integrating BIM and GIS to improve the visual monitoring of construction supply chain management. Automation in Construction, 2013. 31: p. 241-254.
[2]        Eccles, R.G., Bureaucratic versus craft administration: the relationship of market structure to the construction firm. Administrative science quarterly, 1981: p. 449-469.
[3]        Vrijhoef, R. and L. Koskela, The four roles of supply chain management in construction. European journal of purchasing & supply management, 2000. 6(3-4): p. 169-178.
[4]        Segerstedt, A. and T. Olofsson, Supply chains in the construction industry. Supply Chain Management: An International Journal, 2010. 15(5): p. 347-353.
[5]        O'Brien, W.J., et al., Construction supply chain management handbook. 2008: CRC press.
[6]        Frodel, M. and P.-E. Josephson, Perceived Constraints when Establishing and Maintaining Contractor-Supplier Relations in Construction. Construction Management, Chalmers University of Technology, 2009.
[7]        Tuzkaya, G., B. Gülsün, and Ş. Önsel, A methodology for the strategic design of reverse logistics networks and its application in the Turkish white goods industry. International Journal of Production Research, 2011. 49(15): p. 4543-4571.
[8]        Pishvaee, M.S. and J. Razmi, Environmental supply chain network design using multi-objective fuzzy mathematical programming. Applied Mathematical Modelling, 2012. 36(8): p. 3433-3446.
[9]        Pishvaee, M.S., J. Razmi, and S.A. Torabi, Robust possibilistic programming for socially responsible supply chain network design: A new approach. Fuzzy sets and systems, 2012. 206: p. 1-20.
[10]      Badri, H., M. Bashiri, and T.H. Hejazi, Integrated strategic and tactical planning in a supply chain network design with a heuristic solution method. Computers & Operations Research, 2013. 40(4): p. 1143-1154.
[11]      Shankar, B.L., et al., Location and allocation decisions for multi-echelon supply chain network–A multi-objective evolutionary approach. Expert Systems with Applications, 2013. 40(2): p. 551-562.
[12]      Kanzian, C., et al., Design of forest energy supply networks using multi-objective optimization. biomass and bioenergy, 2013. 58: p. 294-302.
[13]      Wu, T. and K. Zhang, A computational study for common network design in multi-commodity supply chains. Computers & Operations Research, 2014. 44: p. 206-213.
[14]      Sarrafha, K., et al., A bi-objective integrated procurement, production, and distribution problem of a multi-echelon supply chain network design: A new tuned MOEA. Computers & Operations Research, 2015. 54: p. 35-51.
[15]      Soleimani, H. and G. Kannan, A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network design in large-scale networks. Applied Mathematical Modelling, 2015. 39(14): p. 3990-4012.
[16]      Fattahi, M., et al., Dynamic supply chain network design with capacity planning and multi-period pricing. Transportation Research Part E: Logistics and Transportation Review, 2015. 81: p. 169-202.
[17]      Hasani, A. and A. Khosrojerdi, Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study. Transportation Research Part E: Logistics and Transportation Review, 2016. 87: p. 20-52.
[18]      Chibeles-Martins, N., et al., A multi-objective meta-heuristic approach for the design and planning of green supply chains-MBSA. Expert Systems with Applications, 2016. 47: p. 71-84.
[19]      Zohal, M. and H. Soleimani, Developing an ant colony approach for green closed-loop supply chain network design: a case study in gold industry. Journal of Cleaner Production, 2016. 133: p. 314-337.
[20]      Kumar, R.S., et al., Designing multi-period supply chain network considering risk and emission: A multi-objective approach. Annals of Operations Research, 2017. 250(2): p. 427-461.
[21]      Fahimnia, B., H. Davarzani, and A. Eshragh, Planning of complex supply chains: A performance comparison of three meta-heuristic algorithms. Computers & Operations Research, 2018. 89: p. 241-252.
[22]      Tsao, Y.-C., et al., Designing sustainable supply chain networks under uncertain environments: fuzzy multi-objective programming. Journal of Cleaner Production, 2018. 174: p. 1550-1565.
[23]      Ghahremani-Nahr, J., R. Kian, and E. Sabet, A robust fuzzy mathematical programming model for the closed-loop supply chain network design and a whale optimization solution algorithm. Expert Systems with Applications, 2019. 116: p. 454-471.
[24]      Hamdan, B. and A. Diabat, A two-stage multi-echelon stochastic blood supply chain problem. Computers & Operations Research, 2019. 101: p. 130-143.
[25]      Dehghanian, F. and S. Mansour, Designing sustainable recovery network of end-of-life products using genetic algorithm. Resources, Conservation and Recycling, 2009. 53(10): p. 559-570.
[26]      Galante, G., et al., A multi-objective approach to solid waste management. Waste Management, 2010. 30(8): p. 1720-1728.
[27]      Ramudhin, A., A. Chaabane, and M. Paquet, Carbon market sensitive sustainable supply chain network design. International Journal of Management Science and Engineering Management, 2010. 5(1): p. 30-38.
[28]      Chaabane, A., A. Ramudhin, and M. Paquet, Designing supply chains with sustainability considerations. Production Planning & Control, 2011. 22(8): p. 727-741.
[29]      Pinto-Varela, T., A.P.F. Barbosa-Póvoa, and A.Q. Novais, Bi-objective optimization approach to the design and planning of supply chains: economic versus environmental performances. Computers & Chemical Engineering, 2011. 35(8): p. 1454-1468.
[30]      Jamshidi, R., S.F. Ghomi, and B. Karimi, Multi-objective green supply chain optimization with a new hybrid memetic algorithm using the Taguchi method. Scientia Iranica, 2012. 19(6): p. 1876-1886.
[31]      Xifeng, T., Z. Ji, and X. Peng, A multi-objective optimization model for sustainable logistics facility location. Transportation Research Part D: Transport and Environment, 2013. 22: p. 45-48.
[32]      Hiremath, N.C., S. Sahu, and M.K. Tiwari, Multi objective outbound logistics network design for a manufacturing supply chain. Journal of Intelligent Manufacturing, 2013. 24(6): p. 1071-1084.
[33]      Yue, D., M.A. Kim, and F. You, Design of sustainable product systems and supply chains with life cycle optimization based on functional unit: general modeling framework, mixed-integer nonlinear programming algorithms and case study on hydrocarbon biofuels. ACS Sustainable Chemistry & Engineering, 2013. 1(8): p. 1003-1014.
[34]      Ruiz-Femenia, R., et al., Multi-objective optimization of environmentally conscious chemical supply chains under demand uncertainty. Chemical Engineering Science, 2013. 95: p. 1-11.
[35]      Özceylan, E. and T. Paksoy, Interactive fuzzy programming approaches to the strategic and tactical planning of a closed-loop supply chain under uncertainty. International Journal of Production Research, 2014. 52(8): p. 2363-2387.
[36]      Govindan, K., et al., Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. International Journal of Production Economics, 2014. 152: p. 9-28.
[37]      Bandyopadhyay, S. and R. Bhattacharya, Solving a tri-objective supply chain problem with modified NSGA-II algorithm. Journal of Manufacturing Systems, 2014. 33(1): p. 41-50.
[38]      Subulan, K., A.S. Taşan, and A. Baykasoğlu, Designing an environmentally conscious tire closed-loop supply chain network with multiple recovery options using interactive fuzzy goal programming. Applied Mathematical Modelling, 2015. 39(9): p. 2661-2702.
[39]      Erik Eriksson, P., Improving construction supply chain collaboration and performance: a lean construction pilot project. Supply Chain Management: An International Journal, 2010. 15(5): p. 394-403.
[40]      Cheng, J.C., et al., A service oriented framework for construction supply chain integration. Automation in construction, 2010. 19(2): p. 245-260.
[41]      Meng, X., M. Sun, and M. Jones, Maturity model for supply chain relationships in construction. Journal of Management in Engineering, 2011. 27(2): p. 97-105.
[42]      Wibowo, M.A. and M.N. Sholeh, The analysis of supply chain performance measurement at construction project. Procedia Engineering, 2015. 125: p. 25-31.
[43]      Liu, Q. and Z. Tao. A multi-objective optimization model for the purchasing and inventory in a three-echelon construction supply chain. in Proceedings of the Ninth International Conference on Management Science and Engineering Management. 2015. Springer.
[44]      Wu, C. and D. Barnes, An integrated model for green partner selection and supply chain construction. Journal of Cleaner Production, 2016. 112: p. 2114-2132.
[45]      Dell'Amico, M. and S. Novellani. A two-echelon facility location problem with stochastic demands for urban construction logistics: An application within the SUCCESS project. in 2017 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI). 2017. IEEE.
[46]      Feng, C., et al., Stackelberg game optimization for integrated production-distribution-construction system in construction supply chain. Knowledge-Based Systems, 2018. 157: p. 52-67.
[47]      Golpîra, H., Optimal integration of the facility location problem into the multi-project multi-supplier multi-resource Construction Supply Chain network design under the vendor managed inventory strategy. Expert Systems with Applications, 2020. 139: p. 112841.
 
[48]      Meng, X., Change in UK construction: moving toward supply chain collaboration. Journal of Civil Engineering and Management, 2013. 19(3): p. 422-432.
[49]      Tennant, S. and S. Fernie, Organizational learning in construction supply chains. Engineering, Construction and Architectural Management, 2013. 20(1): p. 83-98.
[50]      Ke, H., et al., The impact of contractual governance and trust on EPC projects in construction supply chain performance. Inzinerine Ekonomika-Engineering Economics, 2015. 26(4): p. 349-363.
[51]      Moon, S., P.R. Zekavat, and L.E. Bernold, Dynamic control of construction supply chain to improve labor performance. Journal of Construction Engineering and Management, 2015. 141(6): p. 05015002.
[52]      Zhai, Y., R.Y. Zhong, and G.Q. Huang, Buffer space hedging and coordination in prefabricated construction supply chain management. International Journal of Production Economics, 2018. 200: p. 192-206.
[53]      Deb, K., et al., A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 2002. 6(2): p. 182-197.
[54]      Deb, K., et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. in International Conference on Parallel Problem Solving From Nature. 2000. Springer.
[55]      Mirjalili, S., S.M. Mirjalili, and A. Lewis, Grey wolf optimizer. Advances in engineering software, 2014. 69: p. 46-61.
[56]      Mirjalili, S., et al., Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Systems with Applications, 2016. 47: p. 106-119.
[57]      Zitzler, E., M. Laumanns, and L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report, 2001. 103.
[58]      Maghsoudlou, H., et al., Bi-objective optimization of a three-echelon multi-server supply-chain problem in congested systems: Modeling and solution. Computers & Industrial Engineering, 2016. 99: p. 41-62.
[59]      Samadi, A., et al., Heuristic-based metaheuristics to address a sustainable supply chain network design problem. Journal of Industrial and Production Engineering, 2018. 35(2): p. 102-117.