ارزیابی عملکرد تأمین‌کنندگان تجهیزات ‌ابزار دقیق شرکت ‌‌پتروشیمی برزویه با رویکرد ‌نش و تحلیل‌پوششی ‌داده‌ها

نوع مقاله : پژوهشی

نویسندگان

1 دانشیار گروه مدیریت صنعتی، دانشکده اقتصاد و مدیریت، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

2 دانشجوی دکتری مدیریت صنعتی، دانشکده اقتصاد و مدیریت، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

3 گروه مدیریت صنعتی، دانشکده اقتصاد و مدیریت، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

چکیده

با توجه به افزایش رقابت در عرصه تجارت جهانی و نیازهای بازارهای داخلی و خارجی، ارزیابی عملکرد سطح کیفی تأمین‌کنندگان امری ضروری برای شرکت پتروشیمی به‌شمار می‌آید، زیرا منجر به ارتقاء توان رقابتی و افزایش فرصت‌های تجاری می‌شود. به‌همین منظور در این پژوهش از یک مدل ریاضی بر مبنای تحلیل ‌‌پوششی‌داده‌ها و رویکرد نش استفاده ‌شده است تا تأمین‌کنندگان را با مقیاس وسیعی از اقدامات و کسب مزیت رقابتی بسیار، ارزیابی کند و به‌منظور مطالعه موردی به ارزیابی عملکرد 17 تأمین‌کننده تجهیزات ابزار دقیق در شرکت پتروشیمی برزویه پرداخته‌شده است؛ که ابتدا با استفاده از نظرات و تجربیات کارشناسان شرکت پتروشیمی، 22 معیار مؤثر بر ارزیابی سطح کیفی تأمین‌کنندگان تجهیزات ابزار دقیق شناسایی شد و روابط فی‌مابین آنها نیز تحلیل شد و در چهار طبقه اصلی «اقتصادی و هزینه، کیفیت و فنّاوری، ویژگی‌های تأمین‌کننده و خدمات ارائه ‌شده از سوی تأمین‌کننده» قرار گرفتند و بر‌اساس معیارهای منتخب و با استفاده از مدل ریاضی پژوهش به ارزیابی عملکرد هر شرکت تأمین‌کننده پرداخته شده و در نهایت پس از انجام تجزیه ‌وتحلیل توسط نرم‌افزار گمز، تأمین‌کنندگان با توجه به کارایی به‌دست ‌آمده از مدل نهایی رتبه‌بندی گردیدند و شرکت پارس صنعت کاوه با کارایی 9858/0 به‌عنوان تأمین‌کننده برتر انتخاب گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Performance Evaluation of the Instrumentation Equipment Suppliers of the Borzouyeh Petrochemical Company Using the Data Envelopment Analysis and the Nash Game Approach

نویسندگان [English]

  • Morteza Shafiee 1
  • ُSaeedeh Akbarpoor 2
  • Ali Akhlaghi Nik 3
1 Associate Professor of Industrial Management, Economic and Management Faculty, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2 Ph.D Candidate, Department of Industrial Management. Economics and Management Faculty. Shiraz Branch. Islamic Azad University, Shiraz, Iran,
3 Department of Industrial Management, Economic and Management Faculty, Shiraz Branch, Islamic Azad University, Shiraz, Iran
چکیده [English]

Given the increasing competition in global trade and the needs of domestic and foreign markets, evaluating the suppliers’ performance quality is essential for petrochemical companies, because it leads to improved competitiveness and increased business opportunities. Therefore, in this research, a mathematical model based on the data envelopment analysis and the Nash approach has been used to evaluate the suppliers which have a wide range of activities and highly competitive advantages. For the case study, the performance of 17 suppliers of instrumentation equipment in Borzouyeh Petrochemical Company has been evaluated. First, using the opinions and experiences of petrochemical company experts, 22 criteria effective in assessing the quality of suppliers of instrumentation equipment were identified and the relationships between them were also analyzed. These criteria were divided into four main categories: "economy and cost, quality and technology, supplier characteristics and services provided by the supplier". Based on the selected criteria and using the mathematical model of the research, the performance of each supplier was evaluated. Finally, after performing the analysis by GAMS software, the suppliers were ranked according to the performance obtained from the final model. As a result, the Pars Sanat Kaveh Company with an efficiency of 0.9858 was selected as the top supplier.stage.

کلیدواژه‌ها [English]

  • Performance Evaluation
  • Supply Chain
  • Data Envelopment Analysis Model
  • Nash Game Approach
  • Petrochemical Company
[1] S. Talluri and R. Narasimhan, “A methodology for strategic sourcing,”  Eur J Oper Res, vol. 154, pp. 236 ‌250, 2004.##
[2] M. Shafiee, H. Saleh, and M. Ghaderi,  “Benchmarking in the Supply Chain Using Data Envelopment Analysis and System Dynamics Simulations,” Iranian Journal of Supply Chain Management, vol. 23, pp. 55‌70, 2021.##
[3]   J. Wu,  L.  Liang, F. Yang, and  H. Yan,  “Bargaining game model in the evaluation of decision making units. Expert Syst Appl,” vol. 36, pp. 4357-4362, 2009.##
[4]   D. M. Lambert and   M.C. Cooper,   “issues in supply chain Management, Ind market manage,” vol. 29, pp. 65-83, 2000.##
[5] M. Farrell, “The measurement of productive efficiency,” Journal of the Royal Statistics Society, vol. 120, pp. 253-281, 1957.##
[6]  A. Charnes,  W. Cooper, and E. Rhodes,  “Measuring the efficiency of decision making units,” vol. 2,
pp. 429 – 444, 1978.##
[7]   R. D. Banker,   A. Charnes, and W. W. Cooper, “Some models for estimating technical and Scale inefficiencies in data envelopment analysis,” Manage Sci, vol.  30,  pp. 1078–1092, 1984.##
[8] G. R. Jahanshahloo, F. Hosseinzadeh Lotfi, and
H. Nikomaram, “Data Envelopment Analysis and it's Applications. Second Edition Tehran: Islamic Azad University Publications Science and Research Branch,” 2016. (In Persian)##
[9]   A. Gholamabri, “Evaluating the Efficiency of Social Security in Isfahan Province. Economical  Modeling,” vol. 8, pp. 189-215, 2015. (In Persian)  ##
[10] J. F. Nash, “The bargaining problem Economica,” vol. 18, pp. 155–162, 1950.##
[11] M. R. Darvishzadeh, B. Rastgoo,  “Algebraic methods in game theory. Mathematical Culture and Thought,” vol. 37, pp. 149-165, 2018. (In Persian)##
[12] N.  Mansouri, Y. Mosavi jahromy, A. Abolhasani, and B. Shayegani, “Analyzing the Relationship among Government, Central Bank and Speculators in Iran: Approach of Game Theory and Nash Equilibrium. Journal of  Economics and Modeling,” vol. 7, pp. 139‌167,  2017. (In Persian)##
[13] M. Shokri, M. Jahangoshai Rezaee and H. Izadbakhsh, “A unified performance evaluation model in competitive environmen tby combining of data envelopment analysis, balanced scorecard and game theory-case study: Cement companies,” Advances in Industrial Engineering, vol. 49, pp. 45-54, 2015. (In Persian)  ##
[14] F. Yang, D. Wu, L. Liang, G. Bi, and D. D. Wu,    “Supply chain DEA: production possibility set and performance evaluation model,” Ann Oper Res. vol. 185, pp. 195–211, 2011.##
 [15] M. Wang, Y. Li, “Supplier evaluation based on Nash bargaining game model. Expert Syst Appl,” vol. 41, pp. 4181–4185, 2014.##
[16] C. Y.  Lee,   “Mixed-strategy Nash equilibrium  in data envelopment analysis. Eur J Oper Res,” vol. 266, pp. 1013–1024, 2018.##
[17] J. Chu,   J. Wu,   C. Chu, and   T.  Zhang,  “DEA based fixed cost allocation in two-stage systems: leader
follower and satisfaction degree bargaining game approaches,” Omega (Elsevier), vol.  94, 2019.##
[18] R. Mahmoudi, A. Emrouznejad, and M. RastiBarzoki,   “A bargaining game model for performance assessment in network DEA considering sub networks: a real case study in banking. Neural Comput Appl, vol. 31, pp. 6429–6447, 2018.##
[19] M. Örkcü, V. S. Özsoy, and  H. H. Örkcü, “An optimistic-pessimistic DEA model based on game cross efficiency approach. RAIRO: Operations Research,”  vol. 54,  pp. 1215–1230, 2020.##
[20] S.  Hendiani,   A. Mahmoudi, and H. Liao,   “A multi-stage multi-criteria hierarchical decision-making approach for sustainable supplier selection,” vol. 94, pp. 106-456, 2020.##
[21]  J. Majchráková and   I. Kremeňová,   “Transportation Cost as an Important Element of a Supplier Selection Process Based on a Multi-Criteria Decision Analysis,” Transportation Research Procedia, vol. 55, pp. 63–70, 2021.##
[22] A. K. Yazdi, P. F. Wanke, T. Hanne, F. Abdi, and
A. H.Sarfaraz, “Supplier selection in the oil and gas industry: A comprehensive approach for Multi-Criteria Decision Analysis,” Socioecon Plann Sci, p. 101142, 2021.##
[23] R. Garmabaki,   M. khalili,  M. ghalandari,  J. amirian, and M. amirizadehbehbahani, “Evaluating the product efficiency of Golberg Baharan Company with a product development approach Use of Data Envelopment Analysis (DEA),” Iranian Journal of Supply Chain Management, vol. 19, pp. 21-28, 2018. (In Persian) ##
[24] H .Zare Ahmadabadi, S.  Masoudian, and  M. R.  Zare Banadkouki, “Evaluating the technical efficiency of Yazd City health centers with a combined approach of DEA and GT,” Journal of Shahid Sadoughi University of Medical Sciences, vol. 26, pp. 717-732, 2018. (In Persian) ##
[25] M. Rabbani and H. Farrokhi, “Integrating Data  Envelopment Analysis and Reverse Auction Using Bi-level Programming Approach. Iranian Journal
of  Supply Chain Management,” vol. 20,  pp. 69-83, 2018. (In Persian) ##
[26] M. Shafiee and P. Farahgol, “Using Game Theory in Analyzing the Supply Chain With The Customer Market Approach. (Case Study: Fars Cement),” Industrial Management Studies, vol. 17, pp. 185-217, 2019. (In Persian)##
[27] B. Fathi, and R. Zeinalzadeh, “Measuring the efficiency of Iranian electricity distribution companies, a combined approach to bargaining game with DEA,” Quarterly Journal of Energy Policy and Planning Research. vol. 6, pp. 57- 83, 2020. (In Persian) ##
[28] A. Mahmoudi, D. Shishebori, and A. Sadegheih,   “Pricing for a multi-channel supply chain with the participation of a third-party logistics service: A game theory approach,” Iranian Journal of Supply Chain Management, vol. 22, pp. 23-34, 2020. (In Persian)##
[29] S. Dehghan Khavari  and  S. Derakhsh, “an Innovative Throughout Conceptual Model Framework for Logistics Integration,” Iranian Journal of Supply Chain Management, vol. 23, pp. 37-54, 2021. (In Persian)##
[30] N. Jain and A. R. Singh, “Sustainable supplier selection under must-be criteria through Fuzzy inference system,”   J Clean Prod, p. 119275, 2019.##
[31] A. Amini, and S. Abdollahzadeh Moghaddam Teymourlu, “A Model for Evaluating and Selecting the Food Suppliers for Hospitals in Indeterminate Conditions,” Health Research Journal, vol. 5, pp. 16‌31, 2019. (In Persian)##
 [32] S. Kumar,  S. Kumar, and A. G. Barman,   “Supplier selection using fuzzy TOPSIS multi criteria model for a small scale steel manufacturing unit,” Procedia Comput Sci, vol. 133, pp. 905–912, 2018.##
[33] F. Zhang,   J. Chen,   Y. Zhu, Z.  Zhuang, and   J. Li,   “Generalized score functions on interval-valued intuitionistic fuzzy sets with preference parameters for different types of decision makers and their application,” Applied Intelligence. Vol. 48, pp. 84-95, 2018.##
[34] S. Wan, G. Xu, and J. Dong, “Supplier selection using ANP and ELECTRE II in interval 2-tuple linguistic environment,” Inform Scie. vol. 385, pp. 19-38, 2018.##
 [35] M. Yazdani, P.  Chatterjee, E. Zavadskas, and S. Hashemkhani Zolfani, Integrated QFD-MCDM framework for green supplier selection,” J Cleaner Product, vol. 142, pp. 28-40, 2017. (In Persian)##
[36] T. R. Sexton and  H. F.  Lewis,  “Two-stage DEA: An application to major league baseball, J Product Anal,” vol. 19, pp. 227-249, 2003.##