طراحی شبکه زنجیره تامین با راهبرد‌های هماهنگی کنترل موجودی تحت عدم قطعیت با به‌کارگیری رویکرد فرا ابتکاری

نوع مقاله : پژوهشی

نویسندگان

1 کارشناسی ارشد مهندسی صنایع گروه مهندسی صنایع، دانشگاه پیام نور، تهران، ایران

2 استادیار، گروه مهندسی صنایع، دانشگاه پیام نور، تهران، ایران

چکیده

طراحی شبکه زنجیره تامین یکپارچه نقش مهمی در بهبود کارایی عملیاتی شرکت ایفا می‌نماید در این راستا، ادغام مسائل راهبردی چون مکان‌یابی و مدیریت حمل‌ونقل با راهبردهای مدیریت موجودی در طراحی شبکه زنجیره تامین حائز اهمیت است. در پژوهش حاضر مدل ریاضی شبکه زنجیره تامین سه سطحی شامل تأمین‌کننده، انبار و خرده‌فروش با اتخاذ دو راهبرد کنترل موجودی هماهنگ و غیر هماهنگ توسعه‌یافته است. برای مقابله با عدم قطعیت مقدار سفارش اقتصادی رویکرد کنترل انطباقی پویا ارائه‌ شده است. تمرکز اصلی مطالعه بر روی بررسی یکپارچگی یا عدم یکپارچگی موجودی رده‌های مختلف زنجیره تامین و اثر آن بر روی تخصیص موجودی و سطوح اطمینان نقاط ذخیره‌سازی شبکه است بطوریکه سطح خدمت با درجه بالا را تضمین نماید. از الگوریتم فراابتکاری ژنتیک برای بهینه‌سازی مساله با فضای جستجوی بزرگ استفاده شده است و راه‌حل‌های معقول و فرصت های بهبود منطقی ارائه می‌کند. نتایج محاسباتی نشان می‌دهد میزان موجودی و هزینه‌های کل شبکه زنجیره تامین با بکارگیری راهبرد کنترل هماهنگ موجودی کاهش قابل توجهی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Supply Chain Network Design Using Inventory Control Coordination Strategies Under Uncertainty Using Meta-Initiative Approach

نویسندگان [English]

  • Masood Amiri 1
  • Alireza Hamidieh 2
1 Department of industrial engineering, Payame Noor University, Tehran, Iran
2 Department of Industrial Engineering, Payame Noor University, Tehran, Iran
چکیده [English]

The design of the integrated supply chain network plays a vital role in improving the operational efficiency of the company. In this regard, it is essential to integrate strategic issues such as location and transportation management with inventory management strategies in the design of the supply chain network. In the current research, the mathematical model of the three-level supply chain network, including supplier, warehouse, and retailer, has been developed by adopting two coordinated and non-coordinated inventory control strategies. The dynamic adaptive control approach is presented to deal with the uncertainty of the economic order quantity. The study's primary focus is examining the integrity or non-integrity of the inventory of supply chain echelons and its effect on the inventory allocation and the reliability levels of network storage points to guarantee a high level of service. A genetic meta-heuristic algorithm has been used to optimize the problem with an ample search space and provides reasonable solutions and reasonable improvement opportunities. The calculation results show that the amount of inventory and the costs of the entire supply chain network show a significant reduction using the coordinated inventory control strategy.

کلیدواژه‌ها [English]

  • Inventory Control
  • Uncertainty
  • Network Design
  • Supply Chain
  • Coordination
  • Metaheuristi
  • Network Analysis Process

Smiley face

[1] F. Wissuwa, C. F. Durach, and T. Y. Choi, “Selecting resilient suppliers: Supplier complexity and buyer disruption,” International Journal of Production Economics, vol. 253, p. 108601, Nov. 2022, doi: 10.1016/j.ijpe.2022.108601.
[2] Z. Li, Z. Liu, Y. Zhang, H. Zhang, and D. Fu, “Research on resilience assessment and disaster prevention strategy of active distribution network,” Energy Reports, vol. 7, pp. 734–749, Nov. 2021, doi: 10.1016/j.egyr.2021.09.198.
[3] R. H. Teunter and S. Kuipers, “Inventory control with demand substitution: new insights from a two-product Economic Order Quantity analysis,” Omega, vol. 113, p. 102712, Dec. 2022, doi: 10.1016/j.omega.2022.102712.
[4] J. Stentoft, O. S. Mikkelsen, and J. K. Jensen, “Offshoring and backshoring manufacturing from a supply chain innovation perspective,” Supply Chain Forum: An International Journal, vol. 17, no. 4, pp. 190–204,Oct.2016,doi:                                                                                                                                                                                                                                                                                                                              10.1080/16258312.2016.1239465.
[5] S. Laari, P. Wetzel, J. Töyli, and T. Solakivi, “Leveraging supply chain networks for sustainability beyond corporate boundaries: Explorative structural network analysis,” Journal of Cleaner Production, vol. 377, p. 134475, Dec. 2022, doi: 10.1016/j.jclepro.2022.134475.
[6] E. Wari and W. Zhu, “A survey on metaheuristics for optimization in food manufacturing industry,” Applied Soft Computing, vol. 46, pp. 328–343, Sep. 2016, doi: 10.1016/j.asoc.2016.04.034.
[7] D. Nyakam Nya, S. Hachour, and H. Abouaissa, “Inventory Control in Supply Chain: a Model-Free Approach*,”             IFAC-PapersOnLine, vol. 55, no. 10, pp.2755–2760,2022,doi: 10.1016/j.ifacol.2022.10.141.
[8]Keskin,B.B.,Üster,H.,2012. Production/distribution system design with inventory considerations. Naval Res. Logist. (NRL) 59 (2), 172–195., Sep. 2012, doi: 10.1016/j.ejor.2021.09.002.
[9] Z.-H. Zhang and A. Unnikrishnan, “A coordinated       location-inventory problem in closed-loop supply chain,” Transportation Research Part B: Methodological, vol. 89, pp.  127–148, Jul. 2016, doi: 10.1016/j.trb.2016.04.006.
[10] L. Rarità, I. Stamova, and S. Tomasiello, “Numerical schemes and genetic algorithms for the optimal control of a continuous model of supply chains,” Applied Mathematics and Computation, vol.388,p.125464,Jan.2021,doi: 10.1016/j.amc.2020.125464.
[11] S.-K. Fan, C.-H. Jen, and J.-X. Lee, “Profile Monitoring for Autocorrelated Reflow Processes with Small Samples,” Processes, vol. 7, no. 2, p. 104, Feb. 2019, doi: 10.3390/pr7020104.
[12] F. Silva and L. Gao, “A Joint Replenishment            Inventory-Location Model,” Networks and Spatial Economics, vol. 13, no. 1, pp. 107–122, May 2012.                                       doi: 10.1007/s11067-012-9174-2.
[13] Evangelos Theodorou, Evangelos Spiliotis, Vassilios Assimakopoulos,Optimizing inventory control and Logistics,Volume 12,2023,100103, ISSN                                 2192-4376,doi.org/10.1016/j.ejtl.2022.100103.
‌[14] Oussama Kajjoune, Tarik Aouam, Tarik Zouadi, Ravi Prakash Ranjan,Dynamic lot-sizing in a two-stage supply chain with liquidity constraints and financing options,International Journal of Production Economics,Volume 258,2023,108799,ISSN 0925-5273, doi.org/10.1016/j.ijpe.2023.108799.
[15] P. Berling and J. Marklund, “Multi-echelon inventory control: an adjusted normal demand model for implementation in practice,” International Journal of Production Research, vol. 52, no. 11, pp. 3331–3347,Jan.2014,doi: 10.1080/00207543.2013.873555.
[16] R. Z. Farahani, H. Rashidi Bajgan, B. Fahimnia, and M. Kaviani, “Location-inventory problem in supply chains: a modelling review,” International Journal of Production Research, vol. 53, no. 12, pp. 3769–3788, Dec. 2014, doi: 10.1080/00207543.2014.988889.
[17] B. Fleischmann, “The impact of the number of parallel warehouses on total inventory,” OR Spectrum, vol. 38, no. 4, pp. 899–920, Apr. 2016, doi: 10.1007/s00291-016-0442-2.
[18] M. Shahabi, S. Akbarinasaji, A. Unnikrishnan, and R. James, “Integrated Inventory Control and Facility Location Decisions in a Multi-Echelon Supply Chain Network with Hubs,” Networks and Spatial Economics, vol. 13, no. 4, pp. 497–514, Jun. 2013, doi: 10.1007/s11067-013-9196-4.
[19] Diabat, A., Dehghani, E., Jabbarzadeh, A., 2017. Incorporating location and inventory decisions into a supply chain design problem with uncertain demands and lead times, vol. 71,pp.872–893,Oct.2017,doi: 10.1016/j.asoc.2017.07.028.
[20] K. Taxakis and C. Papadopoulos, “A design model and a production–distribution and inventory planning model in      multi-product supply chain networks,” International Journal of Production Research, vol. 54, no. 21, pp. 6436–6457, Mar. 2016, doi: 10.1080/00207543.2016.1158882.
[21] J.-H. Kang and Y.-D. Kim, “Inventory control in a two-level supply chain with risk pooling effect,” International Journal of Production Economics, vol. 135, no. 1, pp. 116–124, Jan. 2012, doi: 10.1016/j.ijpe.2010.11.014.
 [22] R. P. Manatkar, K. Karthik, S. K. Kumar, and M. K. Tiwari, “An integrated inventory optimization model for facility location-allocation problem,” International Journal of Production Research, vol. 54, no. 12, pp. 3640–3658, Dec. 2015, doi: 10.1080/00207543.2015.1120903.
[23] Y.-C. Tsao, D. Mangotra, J.-C. Lu, and M. Dong, “A continuous approximation approach for the integrated facility-inventory allocation problem,” European Journal of Operational Research, vol. 222, no. 2, pp. 216–228, Oct. 2012, doi: 10.1016/j.ejor.2012.04.033.
[24] Y. Chen, L. Li, H. Peng, J. Xiao, Y. Yang, and Y. Shi, “Particle swarm optimizer with two differential mutation,” Applied Soft Computing, vol. 61,pp.314–330,Dec.2017,doi: 10.1016/j.asoc.2017.07.020.
‌[25] T. J. Randy, “Supply Chain Resilience: A Case of Balancing the Supply Chain for Long-term Sustainability,” Council of Supply Chain Management Professionals Cases, vol. 2018, no. 1, pp.1–20,Nov.2018,doi: 10.1108/case.cscmp.2018.000023.
[26] Puga Berling, L. Johansson, and J. Marklund, “Controlling inventories in omni/multi-channel distribution systems with variable customer order-sizes,” Omega, vol. 114, p. 102745, Jan. 2019, doi: 10.1016/j.omega.2019.102745.
 [27] Q. Zhao and C. Li, “Two-Stage Multi-Swarm Particle Swarm Optimizer for Unconstrained and Constrained Global Optimization,” IEEE Access, vol. 8, pp. 124905–124927, 2020, doi: 10.1109/access.2020.3007743.
[29] Lomega, M. Fauzan, and I. M. C. Fanestia, “Supply Chain Resources of Red Chili Based on Food Supply Chain Network in Kulonprogo Indonesia,” Advances in Biological Sciences Research, 2022, doi: 10.2991/absr.k.220101.023.
[30] T. F. Espino-Rodríguez and M. G. Taha, “Supplier innovativeness in supply chain integration and sustainable performance in the hotel industry,” International Journal of Hospitality Management, vol. 100, p. 103103, Jan. 2022, doi: 10.1016/j.ijhm.2021.103103